These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35214373)

  • 21. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context.
    Ferrández-Pastor FJ; García-Chamizo JM; Nieto-Hidalgo M; Mora-Martínez J
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning for Smart Environments in B5G Networks: Connectivity and QoS.
    Alsamhi SH; Almalki FA; Al-Dois H; Ben Othman S; Hassan J; Hawbani A; Sahal R; Lee B; Saleh H
    Comput Intell Neurosci; 2021; 2021():6805151. PubMed ID: 34589123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IoT-Based Strawberry Disease Prediction System for Smart Farming.
    Kim S; Lee M; Shin C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Scheduling Mechanism Based on Optimization Using IoT-Tasks Orchestration for Efficient Patient Health Monitoring.
    Iqbal N; Imran ; Ahmad S; Ahmad R; Kim DH
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Building Environment Detection System for Architectures Based on Internet of Things.
    Zhang D; Ji H; Li Z; Ge H
    Comput Intell Neurosci; 2022; 2022():5438305. PubMed ID: 35387239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Systematic Review of IoT Solutions for Smart Farming.
    Navarro E; Costa N; Pereira A
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Standard-Based Internet of Things Platform and Data Flow Modeling for Smart Environmental Monitoring.
    Filho T; Fernando L; Rabelo M; Silva S; Santos C; Ribeiro M; Grout IA; Moreira W; Oliveira-Jr A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Experimental Comparison of IoT-Based and Traditional Irrigation Scheduling on a Flood-Irrigated Subtropical Lemon Farm.
    Zia H; Rehman A; Harris NR; Fatima S; Khurram M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Improved LDA-Based ELM Classification for Intrusion Detection Algorithm in IoT Application.
    Zheng D; Hong Z; Wang N; Chen P
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial Discharge and Internet of Things: A Switchgear Cell Maintenance Application Using Microclimate Sensors.
    Fechet R; Petrariu AI; Graur A
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Reinforcement Learning Based Transmission Parameter Selection and Energy Management for Long Range Internet of Things.
    Yazid Y; Guerrero-González A; Ez-Zazi I; El Oualkadi A; Arioua M
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Optimized Artificial Intelligence System Using IoT Biosensors Networking for Healthcare Problems.
    Khan S; Singh YV; Singh P; Singh RS
    Comput Intell Neurosci; 2022; 2022():2206573. PubMed ID: 35371215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secure Smart Wearable Computing through Artificial Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring.
    Ramasamy LK; Khan F; Shah M; Prasad BVVS; Iwendi C; Biamba C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Practical Evaluation of a High-Security Energy-Efficient Gateway for IoT Fog Computing Applications.
    Suárez-Albela M; Fernández-Caramés TM; Fraga-Lamas P; Castedo L
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28850104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Optimization Design Based on Artificial Intelligence and Internet of Things on the Electrocardiogram Monitoring System.
    Yin M; Tang R; Liu M; Han K; Lv X; Huang M; Xu P; Hu Y; Ma B; Gai Y
    J Healthc Eng; 2020; 2020():8840910. PubMed ID: 33178407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immune-Endocrine System Inspired Hierarchical Coevolutionary Multiobjective Optimization Algorithm for IoT Service.
    Yang Z; Ding Y; Jin Y; Hao K
    IEEE Trans Cybern; 2020 Jan; 50(1):164-177. PubMed ID: 30235158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy Consumption Analysis of LPWAN Technologies and Lifetime Estimation for IoT Application.
    Singh RK; Puluckul PP; Berkvens R; Weyn M
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the Relationship between Governance and Key Processes of the Iran IoT Innovation System.
    Sadeghizadeh H; Markazi AHD; Shavvalpour S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smart Sensing Period for Efficient Energy Consumption in IoT Network.
    Kim W; Jung I
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31718090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enabling Medicine Reuse Using a Digital Time Temperature Humidity Sensor in an Internet of Pharmaceutical Things Concept.
    Hui TKL; Donyai P; McCrindle R; Sherratt RS
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.