These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 35214391)

  • 1. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists.
    Mavrogiannis N; Ibo M; Fu X; Crivellari F; Gagnon Z
    Biomicrofluidics; 2016 May; 10(3):034107. PubMed ID: 27279931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution integrated piezoresistive sensors for microfluidic monitoring.
    Zhou Y; Werner EM; Lee E; Chu M; Nguyen T; Costa KD; Hui EE; Khine M
    Lab Chip; 2021 Jan; 21(1):83-92. PubMed ID: 33300516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects.
    Dawes J; Chou TH; Shen B; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2024 Aug; 18(4):821-833. PubMed ID: 39167525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices.
    da Silva ENT; Ferreira VS; Lucca BG
    Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications.
    Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC
    Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics and materials for smart water monitoring: A review.
    Saez J; Catalan-Carrio R; Owens RM; Basabe-Desmonts L; Benito-Lopez F
    Anal Chim Acta; 2021 Nov; 1186():338392. PubMed ID: 34756264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A frugal microfluidic pump.
    Fajrial AK; Vega A; Shakya G; Ding X
    Lab Chip; 2021 Dec; 21(24):4772-4778. PubMed ID: 34751689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing pressure-driven pulsatile flows in microfluidic devices.
    Recktenwald SM; Wagner C; John T
    Lab Chip; 2021 Jun; 21(13):2605-2613. PubMed ID: 34008605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomedical Applications of Microfluidic Devices: A Review.
    Gharib G; Bütün İ; Muganlı Z; Kozalak G; Namlı İ; Sarraf SS; Ahmadi VE; Toyran E; van Wijnen AJ; Koşar A
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.