BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 35214391)

  • 21. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.
    Mansoor M; Haneef I; Akhtar S; Rafiq MA; De Luca A; Ali SZ; Udrea F
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous Integration of CMOS Sensors and Fluidic Networks Using Wafer-Level Molding.
    Lindsay M; Bishop K; Sengupta S; Co M; Cumbie M; Chen CH; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1046-1055. PubMed ID: 30010595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
    Lake JR; Heyde KC; Ruder WC
    PLoS One; 2017; 12(4):e0175089. PubMed ID: 28369134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.
    Reyes DR; van Heeren H; Guha S; Herbertson L; Tzannis AP; Ducrée J; Bissig H; Becker H
    Lab Chip; 2021 Jan; 21(1):9-21. PubMed ID: 33289737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification.
    Hiltunen J; Liedert C; Hiltunen M; Huttunen OH; Hiitola-Keinänen J; Aikio S; Harjanne M; Kurkinen M; Hakalahti L; Lee LP
    Lab Chip; 2018 May; 18(11):1552-1559. PubMed ID: 29708259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip.
    Song W; Psaltis D
    Biomicrofluidics; 2011 Dec; 5(4):44110-4411011. PubMed ID: 22662062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.
    Leslie DC; Melnikoff BA; Marchiarullo DJ; Cash DR; Ferrance JP; Landers JP
    Lab Chip; 2010 Aug; 10(15):1960-6. PubMed ID: 20707008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated sensor networks with error correction for multiplexed particle tracking in microfluidic chips.
    Wang N; Liu R; Asmare N; Chu CH; Sarioglu AF
    Biosens Bioelectron; 2021 Feb; 174():112818. PubMed ID: 33250334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toner and paper-based fabrication techniques for microfluidic applications.
    Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.
    Waldbaur A; Kittelmann J; Radtke CP; Hubbuch J; Rapp BE
    Lab Chip; 2013 Jun; 13(12):2337-43. PubMed ID: 23639992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.