These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 35214391)

  • 21. Microfluidics for Environmental Applications.
    Wang T; Yu C; Xie X
    Adv Biochem Eng Biotechnol; 2022; 179():267-290. PubMed ID: 32440697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems.
    Rapier CE; Jagadeesan S; Vatine GD; Ben-Yoav H
    Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis.
    Mavrogiannis N; Desmond M; Ling K; Fu X; Gagnon Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Review on Microfluidics-Based Impedance Biosensors.
    Chen YS; Huang CH; Pai PC; Seo J; Lei KF
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing.
    Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y
    Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Digital microfluidic meter-on-chip.
    Fang Z; Ding Y; Zhang Z; Wang F; Wang Z; Wang H; Pan T
    Lab Chip; 2020 Feb; 20(4):722-733. PubMed ID: 31853525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs.
    Hagemann C; Bailey MCD; Carraro E; Stankevich KS; Lionello VM; Khokhar N; Suklai P; Moreno-Gonzalez C; O'Toole K; Konstantinou G; Dix CL; Joshi S; Giagnorio E; Bergholt MS; Spicer CD; Imbert A; Tedesco FS; Serio A
    PLoS Biol; 2024 Mar; 22(3):e3002503. PubMed ID: 38478490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orientation-Based Control of Microfluidics.
    Norouzi N; Bhakta HC; Grover WH
    PLoS One; 2016; 11(3):e0149259. PubMed ID: 26950700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, fabrication and assembly of lab-on-a-chip and its uses.
    Pradeep A; Raveendran J; Babu TGS
    Prog Mol Biol Transl Sci; 2022; 187(1):121-162. PubMed ID: 35094773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Fabrication of Custom Microfluidic Devices for Research and Educational Applications.
    Levis M; Ontiveros F; Juan J; Kavanagh A; Zartman JJ
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31814613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices.
    Chatterjee K; Graybill PM; Socha JJ; Davalos RV; Staples AE
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33561847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.
    Mansoor M; Haneef I; Akhtar S; Rafiq MA; De Luca A; Ali SZ; Udrea F
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.