BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 35214391)

  • 61. A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications.
    Moraes da Silva Junior S; Bento Ribeiro LE; Fruett F; Stiens J; Swart JW; Moshkalev S
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930642
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimization of Microfluidics for Point-of-Care Blood Sensing.
    Tavakolidakhrabadi A; Stark M; Bacher U; Legros M; Bessire C
    Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920570
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multi-resistive pulse sensor microfluidic device.
    Pollard M; Maugi R; Platt M
    Analyst; 2022 Mar; 147(7):1417-1424. PubMed ID: 35244649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. On chip optofluidic low-pressure monitoring device.
    Chandra Roy A; Bangalore Subramanya S; Manohar Rudresh S; Venkataraman V
    J Biophotonics; 2021 Mar; 14(3):e202000381. PubMed ID: 33169514
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.
    Wu CY; Lu JC; Liu MC; Tung YC
    Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Emerging Trends in Microfluidics Based Devices.
    Solanki S; Pandey CM; Gupta RK; Malhotra BD
    Biotechnol J; 2020 May; 15(5):e1900279. PubMed ID: 32045505
    [TBL] [Abstract][Full Text] [Related]  

  • 69. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Paper-thin multilayer microfluidic devices with integrated valves.
    Kim S; Dorlhiac G; Cotrim Chaves R; Zalavadia M; Streets A
    Lab Chip; 2021 Apr; 21(7):1287-1298. PubMed ID: 33690757
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.
    Zhang X; Zhu Z; Ni Z; Xiang N; Yi H
    Biomed Microdevices; 2017 Jun; 19(2):21. PubMed ID: 28367599
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microfluidic-Based Oxygen (O
    Azimzadeh M; Khashayar P; Amereh M; Tasnim N; Hoorfar M; Akbari M
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049634
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing.
    Zhu S; Zhang X; Chen M; Tang D; Han Y; Xiang N; Ni Z
    Anal Chim Acta; 2021 Aug; 1175():338759. PubMed ID: 34330437
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip.
    Chuchuy J; Rogal J; Ngo T; Stadelmann K; Antkowiak L; Achberger K; Liebau S; Schenke-Layland K; Loskill P
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3006-3017. PubMed ID: 33591723
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lab-on-a-Contact Lens Platforms Fabricated by Multi-Axis Femtosecond Laser Ablation.
    Moreddu R; Nasrollahi V; Kassanos P; Dimov S; Vigolo D; Yetisen AK
    Small; 2021 Sep; 17(38):e2102008. PubMed ID: 34410036
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Self-Priming Microfluidic Chip with Cushion Chambers for Easy Digital PCR.
    Xu G; Si H; Jing F; Sun P; Wu D
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34069758
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.