These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 35214391)

  • 81. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Fast Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators.
    Ferreira DA; Rothbauer M; Conde JP; Ertl P; Oliveira C; Granja PL
    Adv Sci (Weinh); 2021 Apr; 8(8):2003273. PubMed ID: 33898174
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.
    Szydzik C; Gavela AF; Herranz S; Roccisano J; Knoerzer M; Thurgood P; Khoshmanesh K; Mitchell A; Lechuga LM
    Lab Chip; 2017 Aug; 17(16):2793-2804. PubMed ID: 28682395
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
    Sonney S; Shek N; Moran-Mirabal JM
    Biomicrofluidics; 2015 Mar; 9(2):026501. PubMed ID: 25945145
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microfluidics-Based Sensing of Biospecies.
    Xing Y; Zhao L; Cheng Z; Lv C; Yu F; Yu F
    ACS Appl Bio Mater; 2021 Mar; 4(3):2160-2191. PubMed ID: 35014344
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Design and Fabrication of a New Wearable Pressure Sensor for Blood Pressure Monitoring.
    Ion M; Dinulescu S; Firtat B; Savin M; Ionescu ON; Moldovan C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809497
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sensor-Integrated Microfluidic Approaches for Liquid Biopsies Applications in Early Detection of Cancer.
    Sierra J; Marrugo-Ramirez J; Rodríguez-Trujillo R; Mir M; Samitier J
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121271
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An outlook on microfluidics: the promise and the challenge.
    Battat S; Weitz DA; Whitesides GM
    Lab Chip; 2022 Feb; 22(3):530-536. PubMed ID: 35048918
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Recent advances in lab-on-a-chip for biosensing applications.
    Lafleur JP; Jönsson A; Senkbeil S; Kutter JP
    Biosens Bioelectron; 2016 Feb; 76():213-33. PubMed ID: 26318580
    [TBL] [Abstract][Full Text] [Related]  

  • 96. On-a-Chip-Based Sensitive Detection of Drug-Induced Apoptosis in Polarized Gastric Epithelial Cells.
    Bakhchova L; Jantaree P; Gupta A; Isermann B; Steinmann U; Naumann M
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5474-5483. PubMed ID: 34704732
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Generation of a Simplified Three-Dimensional Skin-on-a-chip Model in a Micromachined Microfluidic Platform.
    Risueño I; Valencia L; Holgado M; Jorcano JL; Velasco D
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.