These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI. Dung NT; Thuan NH; Van Dung T; Van Nho L; Tri NM; Vy VPT; Hoang LN; Phat NT; Chuong DA; Dang LH Diagn Interv Imaging; 2023 Mar; 104(3):133-141. PubMed ID: 36328943 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence-Assisted Diagnosis of Anterior Cruciate Ligament Tears From Magnetic Resonance Images: Algorithm Development and Validation Study. Chen KH; Yang CY; Wang HY; Ma HL; Lee OK JMIR AI; 2022 Jul; 1(1):e37508. PubMed ID: 38875555 [TBL] [Abstract][Full Text] [Related]
4. Automated detection of anterior cruciate ligament tears using a deep convolutional neural network. Minamoto Y; Akagi R; Maki S; Shiko Y; Tozawa R; Kimura S; Yamaguchi S; Kawasaki Y; Ohtori S; Sasho T BMC Musculoskelet Disord; 2022 Jun; 23(1):577. PubMed ID: 35705930 [TBL] [Abstract][Full Text] [Related]
5. MGACA-Net: a novel deep learning based multi-scale guided attention and context aggregation for localization of knee anterior cruciate ligament tears region in MRI images. Awan MJ; Mohd Rahim MS; Salim N; Nobanee H; Asif AA; Attiq MO PeerJ Comput Sci; 2023; 9():e1483. PubMed ID: 37547408 [TBL] [Abstract][Full Text] [Related]
6. Automatic segmentation model of intercondylar fossa based on deep learning: a novel and effective assessment method for the notch volume. Li M; Bai H; Zhang F; Zhou Y; Lin Q; Zhou Q; Feng Q; Zhang L BMC Musculoskelet Disord; 2022 May; 23(1):426. PubMed ID: 35524293 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based automated detection and segmentation of bone and traumatic bone marrow lesions from MRI following an acute ACL tear. Stirling CE; Neeteson NJ; Walker REA; Boyd SK Comput Biol Med; 2024 Aug; 178():108791. PubMed ID: 38905892 [TBL] [Abstract][Full Text] [Related]
8. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear. Chang PD; Wong TT; Rasiej MJ J Digit Imaging; 2019 Dec; 32(6):980-986. PubMed ID: 30859341 [TBL] [Abstract][Full Text] [Related]
10. A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament. Flannery SW; Kiapour AM; Edgar DJ; Murray MM; Beveridge JE; Fleming BC J Orthop Res; 2022 Jan; 40(1):277-284. PubMed ID: 33458865 [TBL] [Abstract][Full Text] [Related]
11. Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences. Lansdown DA; Pedoia V; Zaid M; Amano K; Souza RB; Li X; Ma CB Clin Orthop Relat Res; 2017 Oct; 475(10):2427-2435. PubMed ID: 28451863 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. Zhang L; Li M; Zhou Y; Lu G; Zhou Q J Magn Reson Imaging; 2020 Dec; 52(6):1745-1752. PubMed ID: 32715584 [TBL] [Abstract][Full Text] [Related]
13. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Posterior Cruciate Ligament and Intercondylar Notch in Subjects With Anterior Cruciate Ligament Tear: A Comparative Flexed-Knee 3D Magnetic Resonance Imaging Study. Taneja AK; Miranda FC; Demange MK; Prado MP; Santos DCB; Rosemberg LA; Baroni RH Arthroscopy; 2018 Feb; 34(2):557-565. PubMed ID: 29208323 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic efficacy in knee MRI comparing conventional technique and multiplanar reconstruction with one-millimeter FSE PDW images. Yoon YC; Kim SS; Chung HW; Choe BK; Ahn JH Acta Radiol; 2007 Oct; 48(8):869-74. PubMed ID: 17924218 [TBL] [Abstract][Full Text] [Related]
16. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation. Tran A; Lassalle L; Zille P; Guillin R; Pluot E; Adam C; Charachon M; Brat H; Wallaert M; d'Assignies G; Rizk B Eur Radiol; 2022 Dec; 32(12):8394-8403. PubMed ID: 35726103 [TBL] [Abstract][Full Text] [Related]
17. A Torn ACL Mapping in Knee MRI Images Using Deep Convolution Neural Network with Inception-v3. Sridhar S; Amutharaj J; Valsalan P; Arthi B; Ramkumar S; Mathupriya S; Rajendran T; Waji YA J Healthc Eng; 2022; 2022():7872500. PubMed ID: 35178233 [TBL] [Abstract][Full Text] [Related]
18. Degenerative Changes in the Knee 2 Years After Anterior Cruciate Ligament Rupture and Related Risk Factors: A Prospective Observational Follow-up Study. van Meer BL; Oei EH; Meuffels DE; van Arkel ER; Verhaar JA; Bierma-Zeinstra SM; Reijman M Am J Sports Med; 2016 Jun; 44(6):1524-33. PubMed ID: 26965680 [TBL] [Abstract][Full Text] [Related]
19. Automated magnetic resonance image segmentation of the anterior cruciate ligament. Flannery SW; Kiapour AM; Edgar DJ; Murray MM; Fleming BC J Orthop Res; 2021 Apr; 39(4):831-840. PubMed ID: 33241856 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol. Kulseng CPS; Nainamalai V; Grøvik E; Geitung JT; Årøen A; Gjesdal KI BMC Musculoskelet Disord; 2023 Jan; 24(1):41. PubMed ID: 36650496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]