These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 35214465)
1. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning. Ahmad S; Ahmad Z; Kim CH; Kim JM Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465 [TBL] [Abstract][Full Text] [Related]
2. A Hybrid Deep Learning Approach: Integrating Short-Time Fourier Transform and Continuous Wavelet Transform for Improved Pipeline Leak Detection. Siddique MF; Ahmad Z; Ullah N; Kim J Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836908 [TBL] [Abstract][Full Text] [Related]
3. A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov-Smirnov Test. Rai A; Ahmad Z; Hasan MJ; Kim JM Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960342 [TBL] [Abstract][Full Text] [Related]
4. Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework. Siddique MF; Ahmad Z; Ullah N; Ullah S; Kim JM Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931793 [TBL] [Abstract][Full Text] [Related]
5. Advancing deep learning-based acoustic leak detection methods towards application for water distribution systems from a data-centric perspective. Wu Y; Ma X; Guo G; Jia T; Huang Y; Liu S; Fan J; Wu X Water Res; 2024 Sep; 261():121999. PubMed ID: 38941677 [TBL] [Abstract][Full Text] [Related]
6. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals. Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Leak Detection for a Gas Pipeline Using a Quy TB; Kim JM Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430370 [TBL] [Abstract][Full Text] [Related]
8. Leak detection in real water distribution networks based on acoustic emission and machine learning. Fares A; Tijani IA; Rui Z; Zayed T Environ Technol; 2023 Nov; 44(25):3850-3866. PubMed ID: 35506881 [TBL] [Abstract][Full Text] [Related]
9. Improving the leak detection efficiency in water distribution networks using noise loggers. Tijani IA; Abdelmageed S; Fares A; Fan KH; Hu ZY; Zayed T Sci Total Environ; 2022 May; 821():153530. PubMed ID: 35104524 [TBL] [Abstract][Full Text] [Related]
10. A Robust Deep Feature Extraction Method for Human Activity Recognition Using a Wavelet Based Spectral Visualisation Technique. Ahmed N; Numan MOA; Kabir R; Islam MR; Watanobe Y Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001122 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring. Zonzini F; Bogomolov D; Dhamija T; Testoni N; De Marchi L; Marzani A Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161836 [TBL] [Abstract][Full Text] [Related]
12. Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals. Xie Y; Xiao Y; Liu X; Liu G; Jiang W; Qin J Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899829 [TBL] [Abstract][Full Text] [Related]
13. Automated Crack Detection in Monolithic Zirconia Crowns Using Acoustic Emission and Deep Learning Techniques. Tuntiwong K; Tungjitkusolmun S; Phasukkit P Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275594 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning. Kek T; Potočnik P; Misson M; Bergant Z; Sorgente M; Govekar E; Šturm R Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146236 [TBL] [Abstract][Full Text] [Related]
15. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier. May Z; Alam MK; Nayan NA; Rahman NAA; Mahmud MS PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761 [TBL] [Abstract][Full Text] [Related]
16. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms. Ullah N; Ahmed Z; Kim JM Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991937 [TBL] [Abstract][Full Text] [Related]
17. A Reliable Pipeline Leak Detection Method Using Acoustic Emission with Time Difference of Arrival and Kolmogorov-Smirnov Test. Nguyen DT; Nguyen TK; Ahmad Z; Kim JM Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067669 [TBL] [Abstract][Full Text] [Related]
18. Fault Diagnosis in Centrifugal Pumps: A Dual-Scalogram Approach with Convolution Autoencoder and Artificial Neural Network. Zaman W; Ahmad Z; Kim JM Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339571 [TBL] [Abstract][Full Text] [Related]
19. Bearing fault diagnosis based on wavelet sparse convolutional network and acoustic emission compression signals. Tai J; Liu C; Wu X; Yang J Math Biosci Eng; 2022 Jun; 19(8):8057-8080. PubMed ID: 35801457 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Convolutional Neural Network for In Situ AUV Thruster Health Monitoring Using Acoustic Signals. Yeo SJ; Choi WS; Hong SY; Song JH Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]