BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35214465)

  • 1. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Deep Learning Approach: Integrating Short-Time Fourier Transform and Continuous Wavelet Transform for Improved Pipeline Leak Detection.
    Siddique MF; Ahmad Z; Ullah N; Kim J
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Pipeline Leak Detection Technique Based on Acoustic Emission Features and Two-Sample Kolmogorov-Smirnov Test.
    Rai A; Ahmad Z; Hasan MJ; Kim JM
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework.
    Siddique MF; Ahmad Z; Ullah N; Ullah S; Kim JM
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Leak Detection for a Gas Pipeline Using a
    Quy TB; Kim JM
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leak detection in real water distribution networks based on acoustic emission and machine learning.
    Fares A; Tijani IA; Rui Z; Zayed T
    Environ Technol; 2023 Nov; 44(25):3850-3866. PubMed ID: 35506881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the leak detection efficiency in water distribution networks using noise loggers.
    Tijani IA; Abdelmageed S; Fares A; Fan KH; Hu ZY; Zayed T
    Sci Total Environ; 2022 May; 821():153530. PubMed ID: 35104524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring.
    Zonzini F; Bogomolov D; Dhamija T; Testoni N; De Marchi L; Marzani A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals.
    Xie Y; Xiao Y; Liu X; Liu G; Jiang W; Qin J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning.
    Kek T; Potočnik P; Misson M; Bergant Z; Sorgente M; Govekar E; Šturm R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier.
    May Z; Alam MK; Nayan NA; Rahman NAA; Mahmud MS
    PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms.
    Ullah N; Ahmed Z; Kim JM
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reliable Pipeline Leak Detection Method Using Acoustic Emission with Time Difference of Arrival and Kolmogorov-Smirnov Test.
    Nguyen DT; Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault Diagnosis in Centrifugal Pumps: A Dual-Scalogram Approach with Convolution Autoencoder and Artificial Neural Network.
    Zaman W; Ahmad Z; Kim JM
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bearing fault diagnosis based on wavelet sparse convolutional network and acoustic emission compression signals.
    Tai J; Liu C; Wu X; Yang J
    Math Biosci Eng; 2022 Jun; 19(8):8057-8080. PubMed ID: 35801457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Convolutional Neural Network for In Situ AUV Thruster Health Monitoring Using Acoustic Signals.
    Yeo SJ; Choi WS; Hong SY; Song JH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fused convolutional neural network for biomedical image classification.
    Pang S; Du A; Orgun MA; Yu Z
    Med Biol Eng Comput; 2019 Jan; 57(1):107-121. PubMed ID: 30003400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network.
    Fayaz M; Torokeldiev N; Turdumamatov S; Qureshi MS; Qureshi MB; Gwak J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform.
    Guo S; Feng H; Feng W; Lv G; Chen D; Liu Y; Wu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3216-3225. PubMed ID: 34106854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.