These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35214483)

  • 1. Using Automatic Speech Recognition to Assess Thai Speech Language Fluency in the Montreal Cognitive Assessment (MoCA).
    Kantithammakorn P; Punyabukkana P; Pratanwanich PN; Hemrungrojn S; Chunharas C; Wanvarie D
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the Montreal Cognitive Assessment Thai Version to Discriminate Amnestic Mild Cognitive Impairment from Alzheimer's Disease and Healthy Controls: Machine Learning Results.
    Hemrungrojn S; Tangwongchai S; Charoenboon T; Panasawat M; Supasitthumrong T; Chaipresertsud P; Maleevach P; Likitjaroen Y; Phanthumchinda K; Maes M
    Dement Geriatr Cogn Disord; 2021; 50(2):183-194. PubMed ID: 34325427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Speech Recognition for Kazakh Based on Unsupervised Pre-Training.
    Meng W; Yolwas N
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting the Most Important Features for Predicting Mild Cognitive Impairment from Thai Verbal Fluency Assessments.
    Metarugcheep S; Punyabukkana P; Wanvarie D; Hemrungrojn S; Chunharas C; Pratanwanich PN
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thammasat-NECTEC-Chula's Thai Language and Cognition Assessment (TLCA): The Thai Alzheimer's and Mild Cognitive Impairment Screening Test.
    Munthuli A; Vongsurakrai S; Anansiripinyo T; Ellermann V; Sroykhumpa K; Onsuwan C; Chutichetpong P; Hemrungrojn S; Kosawat K; Tantibundhit C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():690-694. PubMed ID: 34891386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Hybrid CTC/Attention Architecture for Agglutinative Language Speech Recognition.
    Ren Z; Yolwas N; Slamu W; Cao R; Wang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Automatic Speech Recognition to Assess Spoken Responses to Cognitive Tests of Semantic Verbal Fluency.
    Pakhomov SV; Marino SE; Banks S; Bernick C
    Speech Commun; 2015 Dec; 75():14-26. PubMed ID: 26622073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finnish parliament ASR corpus: Analysis, benchmarks and statistics.
    Virkkunen A; Rouhe A; Phan N; Kurimo M
    Lang Resour Eval; 2023 Mar; ():1-26. PubMed ID: 37360261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intonation and dialog context as constraints for speech recognition.
    Taylor P; King S; Isard S; Wright H
    Lang Speech; 1998; 41 ( Pt 3-4)():493-512. PubMed ID: 10746367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linguistic disparities in cross-language automatic speech recognition transfer from Arabic to Tashlhiyt.
    Zellou G; Lahrouchi M
    Sci Rep; 2024 Jan; 14(1):313. PubMed ID: 38172277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Processing Automatic Transcriptions with Machine Learning for Verbal Fluency Scoring.
    Bushnell J; Unverzagt F; Wadley VG; Kennedy R; Del Gaizo J; Clark DG
    Speech Commun; 2023 Nov; 155():. PubMed ID: 38881790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Assessment of Mild Cognitive Impairment in Advanced Age With a Novel Multi-Feature Automated Speech and Language Analysis of Verbal Fluency.
    Chen L; Asgari M; Gale R; Wild K; Dodge H; Kaye J
    Front Psychol; 2020; 11():535. PubMed ID: 32328008
    [No Abstract]   [Full Text] [Related]  

  • 13. Domain Adaptation with Augmented Data by Deep Neural Network Based Method Using Re-Recorded Speech for Automatic Speech Recognition in Real Environment.
    Nahar R; Miwa S; Kai A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of Thai monosyllabic word and picture lists applicable to interactive speech audiometry in preschoolers.
    Hemakom A; Jitwiriyanont S; Rugchatjaroen A; Israsena P
    Clin Linguist Phon; 2021 Sep; 35(9):809-828. PubMed ID: 33146053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Language Models for Continuous Uzbek Speech Recognition System.
    Mukhamadiyev A; Mukhiddinov M; Khujayarov I; Ochilov M; Cho J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of an automatic speech recognition model using interview data from long-term care for older adults.
    Hacking C; Verbeek H; Hamers JPH; Aarts S
    J Am Med Inform Assoc; 2023 Feb; 30(3):411-417. PubMed ID: 36495570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accent Recognition with Hybrid Phonetic Features.
    Zhang Z; Wang Y; Yang J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining automatic speech recognition with semantic natural language processing in schizophrenia.
    Ciampelli S; Voppel AE; de Boer JN; Koops S; Sommer IEC
    Psychiatry Res; 2023 Jul; 325():115252. PubMed ID: 37236098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proof-of-concept study for automatic speech recognition to transcribe AAC speakers' speech from high-technology AAC systems.
    Chen SK; Saeli C; Hu G
    Assist Technol; 2024 Jul; 36(4):319-326. PubMed ID: 37748185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.