These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35214483)

  • 21. A proof-of-concept study for automatic speech recognition to transcribe AAC speakers' speech from high-technology AAC systems.
    Chen SK; Saeli C; Hu G
    Assist Technol; 2024 Jul; 36(4):319-326. PubMed ID: 37748185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Montreal Cognitive Assessment After Omission of Hearing-Dependent Subtests: Psychometrics and Clinical Recommendations.
    Al-Yawer F; Pichora-Fuller MK; Phillips NA
    J Am Geriatr Soc; 2019 Aug; 67(8):1689-1694. PubMed ID: 31018015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thai lexical tone perception in native speakers of Thai, English and Mandarin Chinese: an event-related potentials training study.
    Kaan E; Barkley CM; Bao M; Wayland R
    BMC Neurosci; 2008 Jun; 9():53. PubMed ID: 18573210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A subtest analysis of the Montreal cognitive assessment (MoCA): which subtests can best discriminate between healthy controls, mild cognitive impairment and Alzheimer's disease?
    Cecato JF; Martinelli JE; Izbicki R; Yassuda MS; Aprahamian I
    Int Psychogeriatr; 2016 May; 28(5):825-32. PubMed ID: 26620850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Speech Analyses within a Mobile Application for the Assessment of Cognitive Impairment in Elderly People.
    Konig A; Satt A; Sorin A; Hoory R; Derreumaux A; David R; Robert PH
    Curr Alzheimer Res; 2018; 15(2):120-129. PubMed ID: 28847279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy.
    Wang D; Wei Y; Zhang K; Ji D; Wang Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Acoustic Unit Augmentation with BPE-Dropout for Low-Resource End-to-End Speech Recognition.
    Laptev A; Andrusenko A; Podluzhny I; Mitrofanov A; Medennikov I; Matveev Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emphasizing unseen words: New vocabulary acquisition for end-to-end speech recognition.
    Qu L; Weber C; Wermter S
    Neural Netw; 2023 Apr; 161():494-504. PubMed ID: 36805264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain Processing (Auditory Event-Related Potential) of Stressed Versus Unstressed Words in Thai Speech.
    Arunphalungsanti K; Pichitpornchai C
    Percept Mot Skills; 2018 Dec; 125(6):995-1010. PubMed ID: 30114988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Speech Recognition Method Based on Deep Learning Approaches for Uzbek Language.
    Mukhamadiyev A; Khujayarov I; Djuraev O; Cho J
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks.
    Wang T; Hong Y; Wang Q; Su R; Ng ML; Xu J; Wang L; Yan N
    J Alzheimers Dis; 2021; 82(1):185-204. PubMed ID: 33998535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Dysarthric Speech Segmentation With Emulated and Synthetic Augmentation.
    Naeini SA; Simmatis L; Jafari D; Yunusova Y; Taati B
    IEEE J Transl Eng Health Med; 2024; 12():382-389. PubMed ID: 38606392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cluster-Based Pairwise Contrastive Loss for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrospective Analysis of Clinical Performance of an Estonian Speech Recognition System for Radiology: Effects of Different Acoustic and Language Models.
    Paats A; Alumäe T; Meister E; Fridolin I
    J Digit Imaging; 2018 Oct; 31(5):615-621. PubMed ID: 29713836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of Montreal Cognitive Assessment and Discriminant Power of Montreal Cognitive Assessment Subtests in Patients With Mild Cognitive Impairment and Alzheimer Dementia in Turkish Population.
    Kaya Y; Aki OE; Can UA; Derle E; Kibaroğlu S; Barak A
    J Geriatr Psychiatry Neurol; 2014 Jun; 27(2):103-9. PubMed ID: 24578463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative assessment of second language learners' fluency by means of automatic speech recognition technology.
    Cucchiarini C; Strik H; Boves L
    J Acoust Soc Am; 2000 Feb; 107(2):989-99. PubMed ID: 10687708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal Speech Parameters Detect Mild Cognitive Impairment in Different Languages: Validation and Comparison of the Speech-GAP Test® in English and Hungarian.
    Kálmán J; Devanand DP; Gosztolya G; Balogh R; Imre N; Tóth L; Hoffmann I; Kovács I; Vincze V; Pákáski M
    Curr Alzheimer Res; 2022; 19(5):373-386. PubMed ID: 35440309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.