These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35214520)

  • 1. A Dynamic Imaging Simulation Method of Infrared Aero-Optical Effect Based on Continuously Varying Gaussian Superposition Model.
    Zhang S; Chen X; Zu Y; Rao P
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome.
    Wang H; Chen S; Du H; Dang F; Ju L; Ming Y; Zhang R; Shi X; Yu J; Fan Z
    Appl Opt; 2019 Jan; 58(2):274-282. PubMed ID: 30645312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating imaging quality of optical dome affected by aero-optical transmission effect and aero-thermal radiation effect.
    Hui W; Chen S; Zhang W; Dang F; Ju L; Xu X; Fan Z
    Opt Express; 2020 Mar; 28(5):6172-6187. PubMed ID: 32225872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model.
    Yang B; Yu H; Liu C; Wei X; Fan Z; Miao J
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of jet components on the aero-optical effects of a 3D supersonic mixing layer.
    Xing B; Zhang B; Guo G; Li D; Liu H
    Appl Opt; 2021 Sep; 60(27):8231-8238. PubMed ID: 34612919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.
    Xiao H; Zuo B; Tian Y; Zhang W; Hao C; Liu C; Li Q; Li F; Zhang L; Fan Z
    Appl Opt; 2012 Dec; 51(36):8625-36. PubMed ID: 23262604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefront reconstruction method for aero-optical distortion based on compressed sensing.
    Tian B; Qiu D; He T; Zhong Z; Zhang B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):250-258. PubMed ID: 35200961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space.
    Guo G; Liu H; Zhang B
    Appl Opt; 2016 Jun; 55(17):4741-51. PubMed ID: 27409034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect.
    Reinersman PN; Carder KL
    Appl Opt; 1995 Jul; 34(21):4453-71. PubMed ID: 21052279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation on image degradation caused by aero-optical effects of the supersonic mixing layer.
    Guo G; Tong X; Luo Q
    Appl Opt; 2020 Dec; 59(35):11059-11069. PubMed ID: 33361932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Method for Analyzing Aero-Optical Effects with Transient Simulation.
    Yang B; Fan Z; Yu H; Hu H; Yang Z
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a temporal evolution model for aero-optical effects caused by vortices in the supersonic mixing layer.
    Guo G; Liu H; Zhang B
    Appl Opt; 2016 Apr; 55(10):2708-17. PubMed ID: 27139676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor fault diagnosis of aero-engine based on divided flight status.
    Zhao Z; Zhang J; Sun Y; Liu Z
    Rev Sci Instrum; 2017 Nov; 88(11):115007. PubMed ID: 29195375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of 0°-15° attack angle on aero-optical imaging deviation of a blunt-nose vehicle.
    Wang L; Xu L; Zhao S; Zhou L
    Appl Opt; 2023 Jan; 62(2):391-397. PubMed ID: 36630239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on aero-optical prediction of supersonic turbulent boundary layer based on aero-optical linking equation.
    Ding H; Yi S; Zhao X; Yi J; He L
    Opt Express; 2018 Nov; 26(24):31317-31332. PubMed ID: 30650720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate method of generating infrared imaging features by the angular disturbance of an airborne platform.
    Li K; Wang XR; Guo BT; Zhang WG; Yuan H; Zhang JY; Zhao C
    Appl Opt; 2019 Jun; 58(18):4835-4845. PubMed ID: 31503798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of imaging quality degradation of an airborne optical system for aerodynamic flow field around the optical window.
    Hao C; Chen S; Zhang W; Ren J; Li C; Pang H; Wang H; Liu Q; Wang C; Zou H; Fan Z
    Appl Opt; 2013 Nov; 52(33):7889-98. PubMed ID: 24513738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal and adaptive control of aero-optical wavefronts for adaptive optics.
    Tesch J; Gibson S
    J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1625-38. PubMed ID: 23201878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: concept validation.
    Gao Q; Jiang Z; Yi S; Xie W; Liao T
    Appl Opt; 2012 Jun; 51(17):3922-9. PubMed ID: 22695671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on the aero-optical effects of a supersonic mixing layer controlled by the ramp vortex generator array.
    Xia Z; Ding H; Xu X; Yi S
    Appl Opt; 2022 Aug; 61(24):7041-7049. PubMed ID: 36256320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.