These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35214576)

  • 41. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients.
    Li C; Jia T; Xu Q; Ji L; Pan Y
    J Healthc Eng; 2019; 2019():3817124. PubMed ID: 31559004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EEG Headset Evaluation for Detection of Single-Trial Movement Intention for Brain-Computer Interfaces.
    Jochumsen M; Knoche H; Kjaer TW; Dinesen B; Kidmose P
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving EEG-based error detection using relative peak features.
    Ashley AL; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():272-275. PubMed ID: 33017981
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid brain-computer interface with motor imagery and error-related brain activity.
    Mousavi M; Krol LR; de Sa VR
    J Neural Eng; 2020 Oct; 17(5):056041. PubMed ID: 32726757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advancing passive BCIs: a feasibility study of two temporal derivative features and effect size-based feature selection in continuous online EEG-based machine error detection.
    Pan Y; Zander TO; Klug M
    Front Neuroergon; 2024; 5():1346791. PubMed ID: 38813519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy.
    Alcaide-Aguirre RE; Warschausky SA; Brown D; Aref A; Huggins JE
    J Neural Eng; 2017 Dec; 14(6):066001. PubMed ID: 28981448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decoding agency attribution using single trial error-related brain potentials.
    Gomez-Andres A; Cerda-Company X; Cucurell D; Cunillera T; Rodríguez-Fornells A
    Psychophysiology; 2024 Jan; 61(1):e14434. PubMed ID: 37668293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electroencephalographic identifiers of motor adaptation learning.
    Özdenizci O; Yalçın M; Erdoğan A; Patoğlu V; Grosse-Wentrup M; Çetin M
    J Neural Eng; 2017 Aug; 14(4):046027. PubMed ID: 28367834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction Deviants with Varying Degrees Induce Separable Error-related EEG Features.
    Meng J; Liu J; Wang H; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6671-6674. PubMed ID: 34892638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers.
    Heidrich RO; Jensen E; Rebelo F; Oliveira T
    An Acad Bras Cienc; 2015; 87(4):1929-37. PubMed ID: 26536851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments.
    Schudlo LC; Chau T
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Boosting-Based Spatial-Spectral Model for Stroke Patients' EEG Analysis in Rehabilitation Training.
    Liu Y; Zhang H; Chen M; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):169-79. PubMed ID: 26302519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A generic error-related potential classifier based on simulated subjects.
    Xavier Fidêncio A; Klaes C; Iossifidis I
    Front Hum Neurosci; 2024; 18():1390714. PubMed ID: 39086374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Yes or no? A study of ErrPs in the "guess what I am thinking" paradigm with stimuli of different visual content.
    Berkmush-Antipova A; Syrov N; Yakovlev L; Miroshnikov A; Golovanov F; Shusharina N; Kaplan A
    Front Psychol; 2024; 15():1394496. PubMed ID: 39114591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.