These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35214827)
1. Impact of Silica Ions and Nano Silica on Growth and Productivity of Pea Plants under Salinity Stress. Ismail LM; Soliman MI; Abd El-Aziz MH; Abdel-Aziz HMM Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214827 [TBL] [Abstract][Full Text] [Related]
2. Investigating the growth promotion potential of biochar on pea (Pisum sativum) plants under saline conditions. Fareed S; Haider A; Ramzan T; Ahmad M; Younis A; Zulfiqar U; Rehman HU; Waraich EA; Abbas A; Chaudhary T; Soufan W Sci Rep; 2024 May; 14(1):10870. PubMed ID: 38740776 [TBL] [Abstract][Full Text] [Related]
3. Stimulating the Growth, Anabolism, Antioxidants, and Yield of Rice Plants Grown under Salt Stress by Combined Application of Bacterial Inoculants and Nano-Silicon. Alharbi K; Osman HS; Rashwan E; Hafez EM; Omara AE Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559542 [TBL] [Abstract][Full Text] [Related]
4. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na Ali M; Afzal S; Parveen A; Kamran M; Javed MR; Abbasi GH; Malik Z; Riaz M; Ahmad S; Chattha MS; Ali M; Ali Q; Uddin MZ; Rizwan M; Ali S Plant Physiol Biochem; 2021 Jan; 158():208-218. PubMed ID: 33281032 [TBL] [Abstract][Full Text] [Related]
5. Exogenous application of gibberellic acid and silicon to promote salinity tolerance in pea ( Raza Gurmani A; Wang X; Rafique M; Jawad M; Raza Khan A; Ullah Khan Q; Ahmed R; Fiaz S Saudi J Biol Sci; 2022 Jun; 29(6):103305. PubMed ID: 35602866 [TBL] [Abstract][Full Text] [Related]
6. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. Fu X; Ma L; Gui R; Ashraf U; Li Y; Yang X; Zhang J; Imran M; Tang X; Tian H; Mo Z Int J Phytoremediation; 2021; 23(11):1203-1211. PubMed ID: 33617358 [TBL] [Abstract][Full Text] [Related]
7. Nano-selenium, silicon and H Shalaby TA; Abd-Alkarim E; El-Aidy F; Hamed ES; Sharaf-Eldin M; Taha N; El-Ramady H; Bayoumi Y; Dos Reis AR Ecotoxicol Environ Saf; 2021 Apr; 212():111962. PubMed ID: 33550082 [TBL] [Abstract][Full Text] [Related]
8. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. Sarkar MM; Mukherjee S; Mathur P; Roy S Plant Physiol Biochem; 2022 Dec; 192():143-161. PubMed ID: 36242906 [TBL] [Abstract][Full Text] [Related]
9. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029 [TBL] [Abstract][Full Text] [Related]
10. Exogenous Silicon Enhanced Salt Resistance by Maintaining K Meng Y; Yin Q; Yan Z; Wang Y; Niu J; Zhang J; Fan K Front Plant Sci; 2020; 11():1183. PubMed ID: 32983188 [TBL] [Abstract][Full Text] [Related]
11. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Alamri S; Hu Y; Mukherjee S; Aftab T; Fahad S; Raza A; Ahmad M; Siddiqui MH Plant Physiol Biochem; 2020 Dec; 157():47-59. PubMed ID: 33075710 [TBL] [Abstract][Full Text] [Related]
12. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Liang Y; Chen Q; Liu Q; Zhang W; Ding R J Plant Physiol; 2003 Oct; 160(10):1157-64. PubMed ID: 14610884 [TBL] [Abstract][Full Text] [Related]
13. Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Taha RS; Seleiman MF; Shami A; Alhammad BA; Mahdi AHA Plants (Basel); 2021 May; 10(6):. PubMed ID: 34064224 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Garg N; Bhandari P Protoplasma; 2016 Sep; 253(5):1325-45. PubMed ID: 26468060 [TBL] [Abstract][Full Text] [Related]
15. Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Rady MM; Elrys AS; Abo El-Maati MF; Desoky EM Plant Physiol Biochem; 2019 Jun; 139():558-568. PubMed ID: 31029029 [TBL] [Abstract][Full Text] [Related]
16. Plant Growth Promoting Rhizobacteria and Silica Nanoparticles Stimulate Sugar Beet Resilience to Irrigation with Saline Water in Salt-Affected Soils. Alharbi K; Hafez E; Omara AE; Awadalla A; Nehela Y Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432846 [TBL] [Abstract][Full Text] [Related]
17. Interactive Impacts of Beneficial Microbes and Si-Zn Nanocomposite on Growth and Productivity of Soybean Subjected to Water Deficit under Salt-Affected Soil Conditions. Osman HS; Gowayed SM; Elbagory M; Omara AE; El-Monem AMA; Abd El-Razek UA; Hafez EM Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371599 [TBL] [Abstract][Full Text] [Related]
18. Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Yıldıztugay E; Sekmen AH; Turkan I; Kucukoduk M Plant Physiol Biochem; 2011 Aug; 49(8):816-24. PubMed ID: 21605980 [TBL] [Abstract][Full Text] [Related]
19. Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars. Xiong X; Liu N; Wei YQ; Bi YX; Luo JC; Xu RX; Zhou JQ; Zhang YJ Plant Physiol Biochem; 2018 Nov; 132():434-444. PubMed ID: 30290335 [TBL] [Abstract][Full Text] [Related]
20. Silicon fertilization counteracts salinity-induced damages associated with changes in physio-biochemical modulations in spinach. Naz R; Zaman QU; Nazir S; Komal N; Chen Y; Ashraf K; Al-Huqail AA; Alfagham A; Siddiqui MH; Ali HM; Khan F; Sultan K; Khosa Q PLoS One; 2022; 17(6):e0267939. PubMed ID: 35679266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]