These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran. Sasimowski E; Majewski Ł; Grochowicz M Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947175 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride. Siyamak S; Ibrahim NA; Abdolmohammadi S; Yunus WM; Rahman MZ Molecules; 2012 Feb; 17(2):1969-91. PubMed ID: 22343368 [TBL] [Abstract][Full Text] [Related]
9. Development of recycled polylactic acid/oyster shell/biomass waste composite for green packaging materials with pure natural glue and nano-fluid. Xiao D; Qing S; Chen P; Yu Z; Xiao H; Wang X Environ Sci Pollut Res Int; 2020 Jul; 27(21):26276-26304. PubMed ID: 32358757 [TBL] [Abstract][Full Text] [Related]
10. Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules. Dobrosielska M; Dobrucka R; Kozera P; Kozera R; Kołodziejczak M; Gabriel E; Głowacka J; Jałbrzykowski M; Kurzydłowski KJ; Przekop RE Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956665 [TBL] [Abstract][Full Text] [Related]
11. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Yao ZT; Chen T; Li HY; Xia MS; Ye Y; Zheng H J Hazard Mater; 2013 Nov; 262():212-7. PubMed ID: 24036146 [TBL] [Abstract][Full Text] [Related]
12. Study of Agave Fiber-Reinforced Biocomposite Films. Annandarajah C; Li P; Michel M; Chen Y; Jamshidi R; Kiziltas A; Hoch R; Grewell D; Montazami R Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597959 [TBL] [Abstract][Full Text] [Related]
14. Degradation of Polylactic Acid Polymer and Biocomposites Exposed to Controlled Climatic Ageing: Mechanical and Thermal Properties and Structure. Vašíček A; Lenfeld P; Běhálek L Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514367 [TBL] [Abstract][Full Text] [Related]
15. Recycling and reusing potential of disposable low-density polyethylene plastic waste for flexible paver tile construction for outdoor application. Debele AD; Demeke S; Bekele T; Malimo M Heliyon; 2024 Apr; 10(8):e29381. PubMed ID: 38638943 [TBL] [Abstract][Full Text] [Related]
16. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Atai M; Pahlavan A; Moin N Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937 [TBL] [Abstract][Full Text] [Related]
17. Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Olaiya NG; Maraveas C; Salem MA; Raja S; Rashedi A; Alzahrani AY; El-Bahy ZM; Olaiya FG Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683940 [TBL] [Abstract][Full Text] [Related]
18. Utilizing the Potential of Waste Hemp Reinforcement: Investigating Mechanical and Thermal Properties of Polypropylene and Polylactic Acid Biocomposites. Yılmaz A; Özkan H; Genceli Güner FE ACS Omega; 2024 Feb; 9(8):8818-8828. PubMed ID: 38434852 [TBL] [Abstract][Full Text] [Related]
19. Pre-oxidation induced Gao C; Yao M; Peng S; Tan W; Shuai C J Adv Res; 2022 May; 38():143-155. PubMed ID: 35572396 [TBL] [Abstract][Full Text] [Related]
20. Study of the Influence of the Almond Shell Variety on the Mechanical Properties of Starch-Based Polymer Biocomposites. Ibáñez García A; Martínez García A; Ferrándiz Bou S Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32911803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]