BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35215748)

  • 1. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane.
    Kim GH; Kang DH; Jung BN; Shim JK
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Properties of Hydrophobically Modified Nano-SiO
    Xu B; Zhang Q
    ACS Omega; 2021 Apr; 6(14):9764-9770. PubMed ID: 33869956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites.
    Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets.
    Xu D; Wang S; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface.
    Boujemaoui A; Ansari F; Berglund LA
    Biomacromolecules; 2019 Feb; 20(2):598-607. PubMed ID: 30047261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of hydrophobic PLA filaments for additive manufacturing.
    Rajakaruna RADNV; Subeshan B; Asmatulu E
    J Mater Sci; 2022; 57(19):8987-9001. PubMed ID: 35527806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an Amphiphilic Janus-Type Surface in the Cellulose Nanofibril Prepared by Aqueous Counter Collision.
    Tsuji T; Tsuboi K; Yokota S; Tagawa S; Kondo T
    Biomacromolecules; 2021 Feb; 22(2):620-628. PubMed ID: 33415976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency.
    Xing L; Hu C; Zhang W; Guan L; Gu J
    Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addition of Cellulose Nanofibers to Control Surface Roughness for Hydrophobic Ceramic Coatings.
    Shin EA; Kim GH; Jung J; Lee SB; Lee CK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4492-4497. PubMed ID: 33714350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles.
    Jiang X; Mietner JB; Harder C; Komban R; Chen S; Strelow C; Sazama U; Fröba M; Gimmler C; Müller-Buschbaum P; Roth SV; Navarro JRG
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5687-5700. PubMed ID: 36669131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots.
    Wang Q; Tang A; Liu Y; Fang Z; Fu S
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Characterization of Nanocomposite Films Containing Nano-Aluminum Nitride and Cellulose Nanofibrils.
    Nie S; Zhang Y; Wang L; Wu Q; Wang S
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces.
    Bertsch P; Arcari M; Geue T; Mezzenga R; Nyström G; Fischer P
    Biomacromolecules; 2019 Dec; 20(12):4574-4580. PubMed ID: 31714073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition of Organically Modified Silica for the Superhydrophobic Surface with Low Sliding Angle.
    Park JH; Namvari M; Choi GM; Rahmannezhad J; Jeong HJ; Hong MC; Lee CM; Noh SM; Kim SG; Yang SC; Lee HS
    Langmuir; 2023 Apr; 39(13):4622-4630. PubMed ID: 36966511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers.
    Fourati Y; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Feb; 229():115554. PubMed ID: 31826520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescently labeled cellulose nanofibrils for detection and loss analysis.
    Reid MS; Karlsson M; Abitbol T
    Carbohydr Polym; 2020 Dec; 250():116943. PubMed ID: 33049855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.