BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35216113)

  • 1. The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro.
    Damanskienė E; Balnytė I; Valančiūtė A; Alonso MM; Preikšaitis A; Stakišaitis D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparative Experimental Study of Sodium and Magnesium Dichloroacetate Effects on Pediatric PBT24 and SF8628 Cell Glioblastoma Tumors Using a Chicken Embryo Chorioallantoic Membrane Model and on Cells In Vitro.
    Damanskienė E; Balnytė I; Valančiūtė A; Lesauskaitė V; Alonso MM; Stakišaitis D
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-128-3p Enhances the Chemosensitivity of Temozolomide in Glioblastoma by Targeting c-Met and EMT.
    Zhao C; Guo R; Guan F; Ma S; Li M; Wu J; Liu X; Li H; Yang B
    Sci Rep; 2020 Jun; 10(1):9471. PubMed ID: 32528036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-Regulation of Cyclooxygenase-2 (COX-2) Expression by Temozolomide (TMZ) in Human Glioblastoma (GBM) Cell Lines.
    Lombardi F; Augello FR; Artone S; Gugu MK; Cifone MG; Cinque B; Palumbo P
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Effects of Valproic Acid on
    Damanskienė E; Balnytė I; Valančiūtė A; Alonso MM; Stakišaitis D
    Biomedicines; 2022 Apr; 10(5):. PubMed ID: 35625705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 20(S)-ginsenoside-Rg3 reverses temozolomide resistance and restrains epithelial-mesenchymal transition progression in glioblastoma.
    Chen Z; Wei X; Shen L; Zhu H; Zheng X
    Cancer Sci; 2019 Jan; 110(1):389-400. PubMed ID: 30431207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD73 as a target to improve temozolomide chemotherapy effect in glioblastoma preclinical model.
    Azambuja JH; Schuh RS; Michels LR; Gelsleichter NE; Beckenkamp LR; Lenz GS; de Oliveira FH; Wink MR; Stefani MA; Battastini AMO; Teixeira HF; Braganhol E
    Cancer Chemother Pharmacol; 2020 Jun; 85(6):1177-1182. PubMed ID: 32417936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma.
    Banelli B; Carra E; Barbieri F; Würth R; Parodi F; Pattarozzi A; Carosio R; Forlani A; Allemanni G; Marubbi D; Florio T; Daga A; Romani M
    Cell Cycle; 2015; 14(21):3418-29. PubMed ID: 26566863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear factor I A promotes temozolomide resistance in glioblastoma via activation of nuclear factor κB pathway.
    Yu X; Wang M; Zuo J; Wahafu A; Mao P; Li R; Wu W; Xie W; Wang J
    Life Sci; 2019 Nov; 236():116917. PubMed ID: 31614149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of m
    Li F; Chen S; Yu J; Gao Z; Sun Z; Yi Y; Long T; Zhang C; Li Y; Pan Y; Qin C; Long W; Liu Q; Zhao W
    Clin Transl Med; 2021 Sep; 11(9):e553. PubMed ID: 34586728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma.
    Liu B; Zhou J; Wang C; Chi Y; Wei Q; Fu Z; Lian C; Huang Q; Liao C; Yang Z; Zeng H; Xu N; Guo H
    Cell Death Dis; 2020 May; 11(5):384. PubMed ID: 32439916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IKBKE enhances TMZ-chemoresistance through upregulation of MGMT expression in glioblastoma.
    Guo G; Sun Y; Hong R; Xiong J; Lu Y; Liu Y; Lu J; Zhang Z; Guo C; Nan Y; Huang Q
    Clin Transl Oncol; 2020 Aug; 22(8):1252-1262. PubMed ID: 31865606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2.
    Luo W; Yan D; Song Z; Zhu X; Liu X; Li X; Zhao S
    Life Sci; 2019 Jun; 226():98-106. PubMed ID: 30980849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances temozolomide cytotoxicity in glioblastoma multiforme.
    Ho KH; Cheng CH; Chou CM; Chen PH; Liu AJ; Lin CW; Shih CM; Chen KC
    Pharmacol Res; 2019 Sep; 147():104390. PubMed ID: 31398406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma.
    Zeng A; Wei Z; Yan W; Yin J; Huang X; Zhou X; Li R; Shen F; Wu W; Wang X; You Y
    Cancer Lett; 2018 Nov; 436():10-21. PubMed ID: 30102952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newcastle disease virus enhances the growth-inhibiting and proapoptotic effects of temozolomide on glioblastoma cells in vitro and in vivo.
    Bai Y; Chen Y; Hong X; Liu X; Su X; Li S; Dong X; Zhao G; Li Y
    Sci Rep; 2018 Jul; 8(1):11470. PubMed ID: 30065314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of cyclin E1 overcomes temozolomide resistance in glioblastoma by Mcl-1 degradation.
    Liang H; Chen Z; Sun L
    Mol Carcinog; 2019 Aug; 58(8):1502-1511. PubMed ID: 31045274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma.
    Khan MB; Ruggieri R; Jamil E; Tran NL; Gonzalez C; Mugridge N; Gao S; MacDiarmid J; Brahmbhatt H; Sarkaria JN; Boockvar J; Symons M
    Mol Med; 2021 Mar; 27(1):28. PubMed ID: 33765907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis.
    Ge X; Pan MH; Wang L; Li W; Jiang C; He J; Abouzid K; Liu LZ; Shi Z; Jiang BH
    Cell Death Dis; 2018 Nov; 9(11):1128. PubMed ID: 30425242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma.
    Honorato JR; Hauser-Davis RA; Saggioro EM; Correia FV; Sales-Junior SF; Soares LOS; Lima LDR; Moura-Neto V; Lopes GPF; Spohr TCLS
    J Cell Physiol; 2020 Apr; 235(4):3798-3814. PubMed ID: 31613002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.