These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35216199)
1. IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks. Wang X; Zhang C; Zhang Y; Meng X; Zhang Z; Shi X; Song T Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216199 [TBL] [Abstract][Full Text] [Related]
2. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Wang Y; Liu T; Zhao H Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600 [TBL] [Abstract][Full Text] [Related]
3. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks. Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306 [TBL] [Abstract][Full Text] [Related]
5. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X Nucleic Acids Res; 2020 Sep; 48(15):e85. PubMed ID: 32588900 [TBL] [Abstract][Full Text] [Related]
6. A novel batch-effect correction method for scRNA-seq data based on Adversarial Information Factorization. Monnier L; Cournède PH PLoS Comput Biol; 2024 Feb; 20(2):e1011880. PubMed ID: 38386700 [TBL] [Abstract][Full Text] [Related]
7. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Huang Z; Wang J; Lu X; Mohd Zain A; Yu G Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262 [TBL] [Abstract][Full Text] [Related]
8. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Wang CX; Zhang L; Wang B Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717 [TBL] [Abstract][Full Text] [Related]
9. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis. Lin E; Mukherjee S; Kannan S BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701 [TBL] [Abstract][Full Text] [Related]
10. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation. Chen L; Zhai Y; He Q; Wang W; Deng M Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393 [TBL] [Abstract][Full Text] [Related]
11. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data. Zhang Z; Zhao X; Bindra M; Qiu P; Zhang X Nat Commun; 2024 Jan; 15(1):912. PubMed ID: 38291052 [TBL] [Abstract][Full Text] [Related]
12. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders. Wang X; Zhang C; Wang L; Zheng P Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574 [TBL] [Abstract][Full Text] [Related]
13. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Ding J; Regev A Nat Commun; 2021 May; 12(1):2554. PubMed ID: 33953202 [TBL] [Abstract][Full Text] [Related]
14. scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks. Wang T; Zhao H; Xu Y; Wang Y; Shang X; Peng J; Xiao B Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903416 [TBL] [Abstract][Full Text] [Related]
15. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data. Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233 [TBL] [Abstract][Full Text] [Related]
16. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis. Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734 [TBL] [Abstract][Full Text] [Related]
17. Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data. Qin L; Zhang G; Zhang S; Chen Y Adv Sci (Weinh); 2024 Aug; 11(29):e2308934. PubMed ID: 38778573 [TBL] [Abstract][Full Text] [Related]
18. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Wang T; Johnson TS; Shao W; Lu Z; Helm BR; Zhang J; Huang K Genome Biol; 2019 Aug; 20(1):165. PubMed ID: 31405383 [TBL] [Abstract][Full Text] [Related]
19. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis. Zhu M; Lai Y J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729 [TBL] [Abstract][Full Text] [Related]
20. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]