BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35216217)

  • 1. VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions.
    Galati S; Di Stefano M; Martinelli E; Macchia M; Martinelli A; Poli G; Tuccinardi T
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VenomPred 2.0: A Novel
    Di Stefano M; Galati S; Piazza L; Granchi C; Mancini S; Fratini F; Macchia M; Poli G; Tuccinardi T
    J Chem Inf Model; 2024 Apr; 64(7):2275-2289. PubMed ID: 37676238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Prediction of Hemolytic Toxicity on the Human Erythrocytes for Small Molecules by Machine-Learning and Genetic Algorithm.
    Zheng S; Wang Y; Liu W; Chang W; Liang G; Xu Y; Lin F
    J Med Chem; 2020 Jun; 63(12):6499-6512. PubMed ID: 31282671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of mycotoxins based on mutagenicity and carcinogenicity evaluation using combined in silico QSAR methods.
    Lemée P; Fessard V; Habauzit D
    Environ Pollut; 2023 Apr; 323():121284. PubMed ID: 36804886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of mutagenicity and carcinogenicity using in silico modelling: A case study of polychlorinated biphenyls.
    Vračko M; Bobst S
    SAR QSAR Environ Res; 2015; 26(7-9):667-82. PubMed ID: 26329919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProTox-II: a webserver for the prediction of toxicity of chemicals.
    Banerjee P; Eckert AO; Schrey AK; Preissner R
    Nucleic Acids Res; 2018 Jul; 46(W1):W257-W263. PubMed ID: 29718510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries.
    Swanson K; Walther P; Leitz J; Mukherjee S; Wu JC; Shivnaraine RV; Zou J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38913862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Prediction of Chemically Induced Mutagenicity: A Weight of Evidence Approach Integrating Information from QSAR Models and Read-Across Predictions.
    Mombelli E; Raitano G; Benfenati E
    Methods Mol Biol; 2022; 2425():149-183. PubMed ID: 35188632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Machine Learning Methods in Drug Toxicity Prediction.
    Zhang L; Zhang H; Ai H; Hu H; Li S; Zhao J; Liu H
    Curr Top Med Chem; 2018; 18(12):987-997. PubMed ID: 30051792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning - Predicting Ames mutagenicity of small molecules.
    Chu CSM; Simpson JD; O'Neill PM; Berry NG
    J Mol Graph Model; 2021 Dec; 109():108011. PubMed ID: 34555723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.
    Benigni R; Passerini L
    Mutat Res; 2002 Jul; 511(3):191-206. PubMed ID: 12088717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of in silico models for prediction of mutagenicity.
    Bakhtyari NG; Raitano G; Benfenati E; Martin T; Young D
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2013; 31(1):45-66. PubMed ID: 23534394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of predictivity of volatile organic compounds carcinogenicity and mutagenicity by freeware in silico models.
    Guerra LR; de Souza AMT; Côrtes JA; Lione VOF; Castro HC; Alves GG
    Regul Toxicol Pharmacol; 2017 Dec; 91():1-8. PubMed ID: 28970106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Merging applicability domains for in silico assessment of chemical mutagenicity.
    Liu R; Wallqvist A
    J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell fishing: A similarity based approach and machine learning strategy for multiple cell lines-compound sensitivity prediction.
    Tejera E; Carrera I; Jimenes-Vargas K; Armijos-Jaramillo V; Sánchez-Rodríguez A; Cruz-Monteagudo M; Perez-Castillo Y
    PLoS One; 2019; 14(10):e0223276. PubMed ID: 31589649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.