These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35216273)

  • 1. EMBER-Embedding Multiple Molecular Fingerprints for Virtual Screening.
    Mendolia I; Contino S; De Simone G; Perricone U; Pirrone R
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular graph convolutions: moving beyond fingerprints.
    Kearnes S; McCloskey K; Berndl M; Pande V; Riley P
    J Comput Aided Mol Des; 2016 Aug; 30(8):595-608. PubMed ID: 27558503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network.
    Wang Y; Hu J; Lai J; Li Y; Jin H; Zhang L; Zhang LR; Liu ZM
    J Chem Inf Model; 2020 Jun; 60(6):2754-2765. PubMed ID: 32392062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Binding from Screening Assays with Transformer Network Embeddings.
    Morris P; St Clair R; Hahn WE; Barenholtz E
    J Chem Inf Model; 2020 Sep; 60(9):4191-4199. PubMed ID: 32568539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry.
    Li C; Wang J; Niu Z; Yao J; Zeng X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning and virtual drug screening.
    Carpenter KA; Cohen DS; Jarrell JT; Huang X
    Future Med Chem; 2018 Nov; 10(21):2557-2567. PubMed ID: 30288997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network scoring and minimization in the D3R 2017 community challenge.
    Sunseri J; King JE; Francoeur PG; Koes DR
    J Comput Aided Mol Des; 2019 Jan; 33(1):19-34. PubMed ID: 29992528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlayMolecule BindScope: large scale CNN-based virtual screening on the web.
    Skalic M; Martínez-Rosell G; Jiménez J; De Fabritiis G
    Bioinformatics; 2019 Apr; 35(7):1237-1238. PubMed ID: 30169549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges.
    Wang J; Cao D; Tang C; Xu L; He Q; Yang B; Chen X; Sun H; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pilot Study of Multi-Input Recurrent Neural Networks for Drug-Kinase Binding Prediction.
    Carpenter K; Pilozzi A; Huang X
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.