BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35216389)

  • 1. Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance.
    Chen C; Shang X; Sun M; Tang S; Khan A; Zhang D; Yan H; Jiang Y; Yu F; Wu Y; Xie Q
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of N
    Zheng H; Sun X; Li J; Song Y; Song J; Wang F; Liu L; Zhang X; Sui N
    Plant Sci; 2021 Mar; 304():110801. PubMed ID: 33568300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley.
    Yousefirad S; Soltanloo H; Ramezanpour SS; Zaynali Nezhad K; Shariati V
    PLoS One; 2020; 15(3):e0229513. PubMed ID: 32187229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress.
    Guo H; Nie CY; Li Z; Kang J; Wang XL; Cui YN
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Transcriptome Analysis of Genes Related to Membrane Lipid Regulation in Sweet Sorghum under Salt Stress.
    Wu F; Chen Z; Zhang F; Zheng H; Li S; Gao Y; Yang J; Sui N
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNAs balance growth and salt stress responses in sweet sorghum.
    Sun X; Zheng HX; Li S; Gao Y; Dang Y; Chen Z; Wu F; Wang X; Xie Q; Sui N
    Plant J; 2023 Feb; 113(4):677-697. PubMed ID: 36534087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J
    BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes.
    Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X
    BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis.
    Song Y; Li J; Sui Y; Han G; Zhang Y; Guo S; Sui N
    Plant Mol Biol; 2020 Apr; 102(6):603-614. PubMed ID: 32052233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte.
    Ye W; Wang T; Wei W; Lou S; Lan F; Zhu S; Li Q; Ji G; Lin C; Wu X; Ma L
    Plant Cell Physiol; 2020 May; 61(5):882-896. PubMed ID: 32044993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy.
    Azzouz-Olden F; Hunt AG; Dinkins R
    Mol Biol Rep; 2020 May; 47(5):3291-3303. PubMed ID: 32303956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling.
    Gelli M; Duo Y; Konda AR; Zhang C; Holding D; Dweikat I
    BMC Genomics; 2014 Mar; 15():179. PubMed ID: 24597475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE.
    Fracasso A; Trindade LM; Amaducci S
    BMC Plant Biol; 2016 May; 16(1):115. PubMed ID: 27208977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.
    Guo Y; Song Y; Zheng H; Zhang Y; Guo J; Sui N
    J Agric Food Chem; 2018 Jun; 66(24):5992-6002. PubMed ID: 29847118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity.
    Zhang K; Cui H; Li M; Xu Y; Cao S; Long R; Kang J; Wang K; Hu Q; Sun Y
    Ecotoxicol Environ Saf; 2020 May; 194():110435. PubMed ID: 32169728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype.
    Almeida DM; Gregorio GB; Oliveira MM; Saibo NJ
    Plant Mol Biol; 2017 Jan; 93(1-2):61-77. PubMed ID: 27766460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome analysis reveals K
    Li J; Gao Z; Zhou L; Li L; Zhang J; Liu Y; Chen H
    BMC Plant Biol; 2019 Feb; 19(1):67. PubMed ID: 30744551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress.
    Shi P; Gu M
    BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.