These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 35216513)
1. The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Kladova OA; Fedorova OS; Kuznetsov NA Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216513 [TBL] [Abstract][Full Text] [Related]
2. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins. Kladova OA; Alekseeva IV; Saparbaev M; Fedorova OS; Kuznetsov NA Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998246 [TBL] [Abstract][Full Text] [Related]
3. The Activity of Natural Polymorphic Variants of Human DNA Polymerase β Having an Amino Acid Substitution in the Transferase Domain. Kladova OA; Tyugashev TE; Mikushina ES; Kuznetsov NA; Novopashina DS; Kuznetsova AA Cells; 2023 May; 12(9):. PubMed ID: 37174699 [TBL] [Abstract][Full Text] [Related]
4. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Kladova OA; Tyugashev TE; Miroshnikov AA; Novopashina DS; Kuznetsov NA; Kuznetsova AA Biomolecules; 2024 May; 14(5):. PubMed ID: 38785954 [TBL] [Abstract][Full Text] [Related]
5. The Impact of SNP-Induced Amino Acid Substitutions L19P and G66R in the dRP-Lyase Domain of Human DNA Polymerase β on Enzyme Activities. Kladova OA; Tyugashev TE; Yakimov DV; Mikushina ES; Novopashina DS; Kuznetsov NA; Kuznetsova AA Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673769 [TBL] [Abstract][Full Text] [Related]
6. Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis. Kladova OA; Tyugashev TE; Mikushina ES; Soloviev NO; Kuznetsov NA; Novopashina DS; Kuznetsova AA Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982964 [TBL] [Abstract][Full Text] [Related]
7. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps. Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M J Biol Chem; 2024 Jun; 300(6):107355. PubMed ID: 38718860 [TBL] [Abstract][Full Text] [Related]
8. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway. Gulkis M; Martinez E; Almohdar D; Çağlayan M Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780 [TBL] [Abstract][Full Text] [Related]
9. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair. Vasil'eva IA; Moor NA; Lavrik OI Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733 [TBL] [Abstract][Full Text] [Related]
10. Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta. Le Page F; Schreiber V; Dherin C; De Murcia G; Boiteux S J Biol Chem; 2003 May; 278(20):18471-7. PubMed ID: 12637553 [TBL] [Abstract][Full Text] [Related]
11. Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development. Onishi K; Uyeda A; Shida M; Hirayama T; Yagi T; Yamamoto N; Sugo N J Neurosci; 2017 Aug; 37(35):8444-8458. PubMed ID: 28765330 [TBL] [Abstract][Full Text] [Related]
12. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. Tang Q; Çağlayan M J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737 [TBL] [Abstract][Full Text] [Related]
13. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway. Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179 [TBL] [Abstract][Full Text] [Related]
14. C-terminal residues of DNA polymerase β and E3 ligase required for ubiquitin-linked proteolysis of oxidative DNA-protein crosslinks. Quiñones JL; Tang M; Fang Q; Sobol RW; Demple B DNA Repair (Amst); 2024 Nov; 143():103756. PubMed ID: 39243487 [TBL] [Abstract][Full Text] [Related]
15. Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer's disease mouse model. Lillenes MS; Støen M; Gómez-Muñoz M; Torp R; Günther CC; Nilsson LN; Tønjum T Mech Ageing Dev; 2013 Oct; 134(10):467-77. PubMed ID: 24121118 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial DNA integrity is not dependent on DNA polymerase-beta activity. Hansen AB; Griner NB; Anderson JP; Kujoth GC; Prolla TA; Loeb LA; Glick E DNA Repair (Amst); 2006 Jan; 5(1):71-9. PubMed ID: 16165404 [TBL] [Abstract][Full Text] [Related]
17. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Tang JB; Svilar D; Trivedi RN; Wang XH; Goellner EM; Moore B; Hamilton RL; Banze LA; Brown AR; Sobol RW Neuro Oncol; 2011 May; 13(5):471-86. PubMed ID: 21377995 [TBL] [Abstract][Full Text] [Related]
18. Investigation of base excision repair gene variants in late-onset Alzheimer's disease. Ertuzun T; Semerci A; Cakir ME; Ekmekcioglu A; Gok MO; Soltys DT; de Souza-Pinto NC; Sezerman U; Muftuoglu M PLoS One; 2019; 14(8):e0221362. PubMed ID: 31415677 [TBL] [Abstract][Full Text] [Related]
19. Deployment of DNA polymerases beta and lambda in single-nucleotide and multinucleotide pathways of mammalian base excision DNA repair. Thapar U; Demple B DNA Repair (Amst); 2019 Apr; 76():11-19. PubMed ID: 30763888 [TBL] [Abstract][Full Text] [Related]
20. Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Moor NA; Vasil'eva IA; Anarbaev RO; Antson AA; Lavrik OI Nucleic Acids Res; 2015 Jul; 43(12):6009-22. PubMed ID: 26013813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]