BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35217085)

  • 21. One-Pot Synthesis of Cellulose/MXene/PVA Foam for Efficient Methylene Blue Removal.
    Zhao W; Chi H; Zhang S; Zhang X; Li T
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylene blue removal using raw and modified biomass Plumeria alba (white frangipani) in batch mode: isotherm, kinetics, and thermodynamic studies.
    Deka J; Das H; Singh A; Barman P; Devi A; Bhattacharyya KG
    Environ Monit Assess; 2022 Oct; 195(1):26. PubMed ID: 36278964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.
    Nasrullah A; Bhat AH; Naeem A; Isa MH; Danish M
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1792-1799. PubMed ID: 29032214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal.
    Beh JH; Lim TH; Lew JH; Lai JC
    Int J Biol Macromol; 2020 Oct; 160():836-845. PubMed ID: 32485260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylene Blue Adsorption on a Low Cost Adsorbent-Carbonized Peanut Shell.
    Gülen J; Zorbay F
    Water Environ Res; 2017 Sep; 89(9):805-816. PubMed ID: 28855017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption of methylene blue by
    Li L; Li Y; Yang K; Li M; Luan X; Sun Y; Wang H; Sun Q; Tang K; Zheng H; Cui M; Xu W
    Environ Technol; 2022 Jun; 43(15):2342-2351. PubMed ID: 33446065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue.
    Durrani WZ; Nasrullah A; Khan AS; Fagieh TM; Bakhsh EM; Akhtar K; Khan SB; Din IU; Khan MA; Bokhari A
    Chemosphere; 2022 Sep; 302():134793. PubMed ID: 35525452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of novel Ziziphus lotus adsorbent and industrial carbon on methylene blue removal from aqueous solutions.
    Msaad A; Belbahloul M; El Hajjaji S; Zouhri A
    Water Sci Technol; 2018 Dec; 78(10):2055-2063. PubMed ID: 30629533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of calix[4]arene/polyurethane for the adsorptive removal of cationic dye from aqueous solutions.
    Ishak S; Rosly NZ; Abdullah AH; Alang Ahmad SA
    Environ Monit Assess; 2023 Oct; 195(11):1303. PubMed ID: 37828347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistically optimized sequential hydrothermal route for FeTiO
    Koochakzadeh F; Norouzbeigi R; Shayesteh H
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):19167-19181. PubMed ID: 36223025
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Mathivanan M; Syed Abdul Rahman S; Vedachalam R; A SPK; G S; Karuppiah S
    Int J Phytoremediation; 2021; 23(9):982-1000. PubMed ID: 33539712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel, efficient and economical alternative for the removal of toxic organic, inorganic and pathogenic water pollutants using GO-modified PU granular composite.
    Sahu PS; Verma RP; Dabhade AH; Tewari C; Sahoo NG; Saha B
    Environ Pollut; 2023 Jul; 328():121201. PubMed ID: 36738883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of Methylene Blue Dye by Calix[6]Arene-Modified Lead Sulphide (Pbs): Optimisation Using Response Surface Methodology.
    Rosly NZ; Abdullah AH; Ahmad Kamarudin M; Ashari SE; Alang Ahmad SA
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33419155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process.
    Bardhan M; Novera TM; Tabassum M; Islam MA; Jawad AH; Islam MA
    Water Sci Technol; 2020 Nov; 82(9):1932-1949. PubMed ID: 33201856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study on the uptake of methylene blue by biodegradable and eco-friendly carboxylated starch grafted polyvinyl pyrrolidone.
    Haq F; Farid A; Ullah N; Kiran M; Khan RU; Aziz T; Mehmood S; Haroon M; Mubashir M; Bokhari A; Chuah LF; Show PL
    Environ Res; 2022 Dec; 215(Pt 1):114241. PubMed ID: 36100100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of methylene blue from aqueous solutions using water treatment sludge modified with sodium alginate as a low cost adsorbent.
    Poormand H; Leili M; Khazaei M
    Water Sci Technol; 2017 Jan; 75(2):281-295. PubMed ID: 28112655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic adsorption of methylene blue using ternary composite of phosphoric acid geopolymer, calcium alginate, and sodium lauryl sulfate.
    Khan MI; Sufian S; Shamsuddin R; Farooq M; Saafie N
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 38955975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent.
    Moradi E; Ebrahimzadeh H; Mehrani Z; Asgharinezhad AA
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):35071-35081. PubMed ID: 31673970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption performance of polydopamine-modified attapulgite granular adsorbent for methylene blue.
    Zheng W; Wang H; Zhu Z; Wei P
    Water Sci Technol; 2018 Jan; 77(1-2):167-176. PubMed ID: 29339615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis.
    Ai L; Zhang C; Liao F; Wang Y; Li M; Meng L; Jiang J
    J Hazard Mater; 2011 Dec; 198():282-90. PubMed ID: 22040800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.