These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 35217243)
1. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles. Goreham JA; MacLean KFE; Ladouceur M J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243 [TBL] [Abstract][Full Text] [Related]
2. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review. Fang Z; Woodford S; Senanayake D; Ackland D Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829 [TBL] [Abstract][Full Text] [Related]
3. Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles. Smith J; Parikh D; Tate V; Siddicky SF; Hsiao HY Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275743 [TBL] [Abstract][Full Text] [Related]
4. Implant characteristics affect in vivo shoulder kinematics during multiplanar functional motions after reverse shoulder arthroplasty. Como C; LeVasseur C; Kane G; Rai A; Munsch M; Gabrielli A; Hughes J; Anderst W; Lin A J Biomech; 2022 Apr; 135():111050. PubMed ID: 35313249 [TBL] [Abstract][Full Text] [Related]
5. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional kinematics of upper limb anatomical movements in asymptomatic adults: Dominant vs. non-dominant. Assi A; Bakouny Z; Karam M; Massaad A; Skalli W; Ghanem I Hum Mov Sci; 2016 Dec; 50():10-18. PubMed ID: 27639219 [TBL] [Abstract][Full Text] [Related]
7. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors. Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600 [TBL] [Abstract][Full Text] [Related]
8. Validation of the Perception Neuron system for full-body motion capture. Choo CZY; Chow JY; Komar J PLoS One; 2022; 17(1):e0262730. PubMed ID: 35061781 [TBL] [Abstract][Full Text] [Related]
9. Validation of Inertial Measurement Units for Upper Body Kinematics. Morrow MMB; Lowndes B; Fortune E; Kaufman KR; Hallbeck MS J Appl Biomech; 2017 Jul; 33(3):227-232. PubMed ID: 27918696 [TBL] [Abstract][Full Text] [Related]
10. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept. Zabat M; Ababou A; Ababou N; Dumas R Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784 [TBL] [Abstract][Full Text] [Related]
11. 3D motion capture using the HUX model for monitoring functional changes with arthroplasty in patients with degenerative osteoarthritis. Maier MW; Kasten P; Niklasch M; Dreher T; Zeifang F; Rettig O; Wolf SI Gait Posture; 2014 Jan; 39(1):7-11. PubMed ID: 23931848 [TBL] [Abstract][Full Text] [Related]
12. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Concurrent Validity and Reliability. Kaszyński J; Baka C; Białecka M; Lubiatowski P Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687955 [TBL] [Abstract][Full Text] [Related]
13. Assessment of an IMU-Based Experimental Set-Up for Upper Limb Motion in Obese Subjects. Cerfoglio S; Lopomo NF; Capodaglio P; Scalona E; Monfrini R; Verme F; Galli M; Cimolin V Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005650 [TBL] [Abstract][Full Text] [Related]
14. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices. Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097 [TBL] [Abstract][Full Text] [Related]
15. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study. Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931 [TBL] [Abstract][Full Text] [Related]
16. The nature and extent of upper limb associated reactions during walking in people with acquired brain injury. Kahn MB; Clark RA; Williams G; Bower KJ; Banky M; Olver J; Mentiplay BF J Neuroeng Rehabil; 2019 Dec; 16(1):160. PubMed ID: 31881975 [TBL] [Abstract][Full Text] [Related]
17. Strength and Motion in the Shoulder, Elbow, and Hip in Softball Windmill Pitchers. West AM; Scarborough DM; McInnis KC; Oh LS PM R; 2019 Dec; 11(12):1302-1311. PubMed ID: 30734537 [TBL] [Abstract][Full Text] [Related]
18. Range of Motion Requirements for Upper-Limb Activities of Daily Living. Gates DH; Walters LS; Cowley J; Wilken JM; Resnik L Am J Occup Ther; 2016; 70(1):7001350010p1-7001350010p10. PubMed ID: 26709433 [TBL] [Abstract][Full Text] [Related]
19. Characterization of normative angular joint kinematics during two functional upper limb tasks. Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking. Barraza Madrigal JA; Cardiel E; Rogeli P; Leija Salas L; Muñoz Guerrero R Med Eng Phys; 2016 Aug; 38(8):793-800. PubMed ID: 27185034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]