These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35217297)

  • 1. CRISPR-based metabolic engineering in non-model microorganisms.
    Lu L; Shen X; Sun X; Yan Y; Wang J; Yuan Q
    Curr Opin Biotechnol; 2022 Jun; 75():102698. PubMed ID: 35217297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 advances engineering of microbial cell factories.
    Jakočiūnas T; Jensen MK; Keasling JD
    Metab Eng; 2016 Mar; 34():44-59. PubMed ID: 26707540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria.
    Pattharaprachayakul N; Lee M; Incharoensakdi A; Woo HM
    Enzyme Microb Technol; 2020 Oct; 140():109619. PubMed ID: 32912679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.
    Naduthodi MIS; Barbosa MJ; van der Oost J
    Biotechnol J; 2018 Sep; 13(9):e1700591. PubMed ID: 29396999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-derived genome editing technologies for metabolic engineering.
    Nishida K; Kondo A
    Metab Eng; 2021 Jan; 63():141-147. PubMed ID: 33307189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules.
    Singh R; Chandel S; Ghosh A; Dey D; Chakravarti R; Roy S; Ravichandiran V; Ghosh D
    Mol Biotechnol; 2021 Jun; 63(6):459-476. PubMed ID: 33774733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-based metabolic pathway engineering.
    Zhao D; Zhu X; Zhou H; Sun N; Wang T; Bi C; Zhang X
    Metab Eng; 2021 Jan; 63():148-159. PubMed ID: 33152516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas mediated genome engineering of cyanobacteria.
    Sengupta A; Liu D; Pakrasi HB
    Methods Enzymol; 2022; 676():403-432. PubMed ID: 36280360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in domesticating non-model microorganisms.
    Fatma Z; Schultz JC; Zhao H
    Biotechnol Prog; 2020 Sep; 36(5):e3008. PubMed ID: 32329213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.
    Roointan A; Morowvat MH
    Biotechnol Genet Eng Rev; 2016; 32(1-2):74-91. PubMed ID: 28052722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects.
    Mougiakos I; Bosma EF; Ganguly J; van der Oost J; van Kranenburg R
    Curr Opin Biotechnol; 2018 Apr; 50():146-157. PubMed ID: 29414054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    ACS Synth Biol; 2020 Sep; 9(9):2228-2238. PubMed ID: 32794766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives.
    Le Y; Sun J
    Adv Appl Microbiol; 2022; 118():1-30. PubMed ID: 35461662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base editing for reprogramming cyanobacterium Synechococcus elongatus.
    Wang SY; Li X; Wang SG; Xia PF
    Metab Eng; 2023 Jan; 75():91-99. PubMed ID: 36403709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of different types of CRISPR/Cas-based systems in bacteria.
    Liu Z; Dong H; Cui Y; Cong L; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 18. CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria.
    Behler J; Vijay D; Hess WR; Akhtar MK
    Trends Biotechnol; 2018 Oct; 36(10):996-1010. PubMed ID: 29937051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex genome editing of microorganisms using CRISPR-Cas.
    Adiego-Pérez B; Randazzo P; Daran JM; Verwaal R; Roubos JA; Daran-Lapujade P; van der Oost J
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31087001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.