BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3521736)

  • 1. Oxidation-reduction properties of glycolate oxidase.
    Pace C; Stankovich M
    Biochemistry; 1986 May; 25(9):2516-22. PubMed ID: 3521736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox potentials of the flavoprotein lactate oxidase.
    Stankovich M; Fox B
    Biochemistry; 1983 Sep; 22(19):4466-72. PubMed ID: 6626511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of an intermediate in the oxidative half-reaction of human liver glycolate oxidase.
    Pennati A; Gadda G
    Biochemistry; 2011 Jan; 50(1):1-3. PubMed ID: 21141873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization.
    Macheroux P; Massey V; Thiele DJ; Volokita M
    Biochemistry; 1991 May; 30(18):4612-9. PubMed ID: 1850628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox potentials of flavocytochromes c from the phototrophic bacteria, Chromatium vinosum and Chlorobium thiosulfatophilum.
    Meyer TE; Bartsch RG; Caffrey MS; Cusanovich MA
    Arch Biochem Biophys; 1991 May; 287(1):128-34. PubMed ID: 1654798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tyrosine 129 in the active site of spinach glycolate oxidase.
    Macheroux P; Kieweg V; Massey V; Söderlind E; Stenberg K; Lindqvist Y
    Eur J Biochem; 1993 May; 213(3):1047-54. PubMed ID: 8504801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic control of D-amino acid oxidase by benzoate binding.
    Van den Berghe-Snorek S; Stankovich MT
    J Biol Chem; 1985 Mar; 260(6):3373-9. PubMed ID: 2857720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel glycolate oxidase requiring flavin mononucleotide as the cofactor in the prasinophycean alga Mesostigma viride.
    Iwamoto K; Ikawa T
    Plant Cell Physiol; 2000 Aug; 41(8):988-91. PubMed ID: 11038060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox potential-pH properties of the flavoprotein L-amino-acid oxidase.
    Stankovich MT; Fox BG
    Biochim Biophys Acta; 1984 Apr; 786(1-2):49-56. PubMed ID: 6712956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms.
    Stankovich MT; Schopfer LM; Massey V
    J Biol Chem; 1978 Jul; 253(14):4971-9. PubMed ID: 27511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase.
    Mayhew SG; Whitfield CD; Ghisla S; Schuman-Jörns M
    Eur J Biochem; 1974 May; 44(2):579-91. PubMed ID: 4365840
    [No Abstract]   [Full Text] [Related]  

  • 14. Structures of glycolate oxidase from Nicotiana benthamiana reveal a conserved pH sensor affecting the binding of FMN.
    Liu Y; Wu W; Chen Z
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3050-3056. PubMed ID: 30143257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rabbit liver pyridoxamine (pyridoxine) 5'-phosphate oxidase. Purification and properties.
    Kazarinoff MN; McCormick DB
    J Biol Chem; 1975 May; 250(9):3436-42. PubMed ID: 235547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and redox properties of glycine oxidase from Bacillus subtilis.
    Pedotti M; Ghisla S; Motteran L; Molla G; Pollegioni L
    Biochimie; 2009 May; 91(5):604-12. PubMed ID: 19254749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation-reduction properties of trimethylamine dehydrogenase: effect of inhibitor binding.
    Pace CP; Stankovich MT
    Arch Biochem Biophys; 1991 May; 287(1):97-104. PubMed ID: 1897998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.
    Stenberg K; Clausen T; Lindqvist Y; Macheroux P
    Eur J Biochem; 1995 Mar; 228(2):408-16. PubMed ID: 7705356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity of aliphatic L- -hydroxyacid oxidase and glycolate oxidase from rat livers.
    Ushijima Y
    Arch Biochem Biophys; 1973 Apr; 155(2):361-7. PubMed ID: 4705431
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and characterization of recombinant human liver glycolate oxidase.
    Vignaud C; Pietrancosta N; Williams EL; Rumsby G; Lederer F
    Arch Biochem Biophys; 2007 Sep; 465(2):410-6. PubMed ID: 17669354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.