BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3521736)

  • 21. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker's yeast.
    Urban P; Chirat I; Lederer F
    Biochemistry; 1988 Sep; 27(19):7365-71. PubMed ID: 3061453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycolate oxidase of hog kidney.
    Tokushige M; Sizer IW
    J Biochem; 1967 Dec; 62(6):719-25. PubMed ID: 5626784
    [No Abstract]   [Full Text] [Related]  

  • 23. Involvement of ionizable groups in catalysis of human liver glycolate oxidase.
    Pennati A; Gadda G
    J Biol Chem; 2009 Nov; 284(45):31214-22. PubMed ID: 19758989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and biophysical studies on cytochrome c oxidase. XVIII. Potentiometric titrations of cytochrome c oxidase followed by circular dichroism.
    Tiesjema RH; Hardy GP; van Gelder BF
    Biochim Biophys Acta; 1974 Jul; 357(1):24-33. PubMed ID: 4369809
    [No Abstract]   [Full Text] [Related]  

  • 25. Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii.
    Pace CP; Stankovich MT
    Biochim Biophys Acta; 1987 Feb; 911(3):267-76. PubMed ID: 3814604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoinactivation and protection of glycolate oxidase in vitro and in leaves.
    Schäfer L; Feierabend J
    Z Naturforsch C J Biosci; 2000; 55(5-6):361-72. PubMed ID: 10928547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding.
    Einarsdottir GH; Stankovich MT; Tu SC
    Biochemistry; 1988 May; 27(9):3277-85. PubMed ID: 3390431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycerate-oxidizing activity of glycolate oxidase from leaves of Spinacia oleracea.
    Huang JJ; Wang WJ; Ye JQ; Peng XX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):183-8. PubMed ID: 16622317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The recognition of glycolate oxidase apoprotein with flavin analogs in higher plants.
    Wang WJ; Huang JQ; Yang C; Huang JJ; Li MQ
    Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):290-6. PubMed ID: 15253155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and characterization of glycolic acid oxidase from human liver.
    Fry DW; Richardson KE
    Biochim Biophys Acta; 1979 May; 568(1):135-44. PubMed ID: 444540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of reversible freezing inactivation and inhibitor binding on redox properties of L-amino-acid oxidase.
    Soltysik S; Byron CM; Einarsdottir GH; Stankovich MT
    Biochim Biophys Acta; 1987 Jan; 911(2):201-8. PubMed ID: 3801494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of reversing the protein positive charge in the proximity of the flavin N(1) locus of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2006 Mar; 45(10):3437-47. PubMed ID: 16519539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins.
    Ludwig ML; Schopfer LM; Metzger AL; Pattridge KA; Massey V
    Biochemistry; 1990 Nov; 29(45):10364-75. PubMed ID: 2261478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical properties of flavodoxin from Desulfovibrio vulgaris.
    Dubourdieu M; le Gall J; Favaudon V
    Biochim Biophys Acta; 1975 Mar; 376(3):519-32. PubMed ID: 235984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
    Murray MS; Holmes RP; Lowther WT
    Biochemistry; 2008 Feb; 47(8):2439-49. PubMed ID: 18215067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies.
    Palfey BA; Björnberg O; Jensen KF
    Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials.
    Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J
    Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.