These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35217390)

  • 1. Differences in muscle synergies among recovery responses limit inter-task generalisation of stability performance.
    König M; Santuz A; Epro G; Werth J; Arampatzis A; Karamanidis K
    Hum Mov Sci; 2022 Apr; 82():102937. PubMed ID: 35217390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span.
    König M; Epro G; Seeley J; Potthast W; Karamanidis K
    J Neurophysiol; 2019 Nov; 122(5):1884-1893. PubMed ID: 31509470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in motor response to stability perturbations limit fall-resisting skill transfer.
    Werth J; Epro G; König M; Santuz A; Seeley J; Arampatzis A; Karamanidis K
    Sci Rep; 2022 Dec; 12(1):21901. PubMed ID: 36535994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise.
    Epro G; Mierau A; McCrum C; Leyendecker M; Brüggemann GP; Karamanidis K
    J Neurophysiol; 2018 Jun; 119(6):2229-2240. PubMed ID: 29537914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on perturbation dose.
    König M; Epro G; Seeley J; Catalá-Lehnen P; Potthast W; Karamanidis K
    J Biomech; 2019 Feb; 84():243-246. PubMed ID: 30577971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations.
    Laudani L; Rum L; Valle MS; Macaluso A; Vannozzi G; Casabona A
    Eur J Appl Physiol; 2021 Feb; 121(2):465-478. PubMed ID: 33106932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability to increase the base of support and recover stability is limited in its generalisation for different balance perturbation tasks.
    Bosquée J; Werth J; Epro G; Hülsdünker T; Potthast W; Meijer K; Ellegast R; Karamanidis K
    Eur Rev Aging Phys Act; 2021 Oct; 18(1):20. PubMed ID: 34615457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular mechanisms of motor adaptation to repeated gait-slip perturbations in older adults.
    Wang S; Pai YC; Bhatt T
    Sci Rep; 2022 Nov; 12(1):19851. PubMed ID: 36400866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults.
    Brüll L; Santuz A; Mersmann F; Bohm S; Schwenk M; Arampatzis A
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38506185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related adaptation of the body's kinematic responses to unpredictable trip perturbations induced by a split-belt treadmill
    Yoo D; Lee C; Ahn J; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small directional treadmill perturbations induce differential gait stability adaptation.
    Li J; Huang HJ
    J Neurophysiol; 2022 Jan; 127(1):38-55. PubMed ID: 34851745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Older adults exhibit variable responses in stepping behaviour following unexpected forward perturbations during gait initiation.
    Shulman D; Spencer A; Ann Vallis L
    Hum Mov Sci; 2019 Feb; 63():120-128. PubMed ID: 30513458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia.
    Aprigliano F; Martelli D; Kang J; Kuo SH; Kang UJ; Monaco V; Micera S; Agrawal SK
    J Neuroeng Rehabil; 2019 Apr; 16(1):50. PubMed ID: 30975168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proactive Locomotor Adjustments Are Specific to Perturbation Uncertainty in Below-Knee Prosthesis Users.
    Major MJ; Serba CK; Chen X; Reimold N; Ndubuisi-Obi F; Gordon KE
    Sci Rep; 2018 Jan; 8(1):1863. PubMed ID: 29382889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of adaptation from a multiple to a single step recovery strategy following repeated exposure to forward loss of balance in older adults.
    Carty CP; Cronin NJ; Lichtwark GA; Mills PM; Barrett RS
    PLoS One; 2012; 7(3):e33591. PubMed ID: 22438956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular organisation and robustness of postural control in the presence of perturbations.
    Munoz-Martel V; Santuz A; Ekizos A; Arampatzis A
    Sci Rep; 2019 Aug; 9(1):12273. PubMed ID: 31439926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.