These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35217448)

  • 1. The enrichment of rare earth from magnesium salt leaching solution of ion-adsorbed type deposit: A waste-free process for removing impurities.
    Li L; Liu C; Zhang H; Huang B; Luo B; Bie C; Sun X
    J Environ Manage; 2022 May; 310():114743. PubMed ID: 35217448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An eco-friendly and high-yield extraction of rare earth from the leaching solution of ion adsorbed minerals.
    Yu G; Zhang H; Tian Z; Gao Y; Fu X; Sun X
    J Hazard Mater; 2024 Jul; 473():134633. PubMed ID: 38772109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XRD and TEM analyses of a simulated leached rare earth ore deposit: Implications for clay mineral contents and structural evolution.
    Jin X; Chen L; Chen H; Zhang L; Wang W; Ji H; Deng S; Jiang L
    Ecotoxicol Environ Saf; 2021 Dec; 225():112728. PubMed ID: 34500383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A safer and cleaner process for recovering thorium and rare earth elements from radioactive waste residue.
    Su J; Gao Y; Ni S; Xu R; Sun X
    J Hazard Mater; 2021 Mar; 406():124654. PubMed ID: 33321319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Sulfate Ions from Calcium Oxide Precipitation Enrichment of a Rare Earth Leaching Liquor by Stirring Washing with Sodium Hydroxide.
    He Q; Lai F; Lai A; Qiu J; Xiao Y
    ACS Omega; 2021 Mar; 6(8):5209-5220. PubMed ID: 33681562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heap leaching of ion adsorption rare earth ores and REEs recovery from leachate with lixiviant regeneration.
    Meng X; Zhao H; Zhao Y; Shen L; Gu G; Qiu G
    Sci Total Environ; 2023 Nov; 898():165417. PubMed ID: 37429479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the role of microbial metabolites in in-situ noncontact bioleaching of ion-adsorption rare earth ore.
    Zhao Y; Zhao H; Shen L; Qiu G; Wang Y
    J Environ Manage; 2024 Sep; 368():122184. PubMed ID: 39128358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination Chemistry-Driven Approaches to Rare Earth Element Separations.
    Higgins RF; Ruoff KP; Kumar A; Schelter EJ
    Acc Chem Res; 2022 Sep; 55(18):2616-2627. PubMed ID: 36041177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process.
    Zhou L; Wang X; Zhuo Y; Hu K; Zhong W; Huang G
    R Soc Open Sci; 2019 Nov; 6(11):191107. PubMed ID: 31827847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic leaching process for ion-exchange ammonium from weathered crust elution deposited rare earth tailings with potassium magnesium compound eluent.
    Li X; Yu J; Li X; Song G; Ouyang Z; Wang R; Zhang Z; Xiao C; Chi R
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121513-121528. PubMed ID: 37955730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen removal and silicon recovery from polycrystalline silicon kerf loss by combining vacuum magnesium thermal reduction and hydrochloric acid leaching.
    Yang F; Yu W; Wen J; Jiang W; Emmanuel NJ
    J Environ Manage; 2023 Jul; 338():117829. PubMed ID: 37023602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical distribution and occurrence state of the residual leaching agent (ammonium sulfate) in the weathered crust elution-deposited rare earth ore.
    Huang S; Li Z; Yu J; Feng J; Hou H; Chi R
    J Environ Manage; 2021 Dec; 299():113642. PubMed ID: 34467858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ore With Formate Salts.
    Chen Z; Zhang Z; Chi R
    Front Chem; 2020; 8():598752. PubMed ID: 33344419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly strategy for preparation of high-purity silica from high-silica IOTs using S-HGMS coupling with ultrasound-assisted fluorine-free acid leaching technology.
    Li Y; Li S; Pan X; Zhao X; Guo P
    J Environ Manage; 2023 Aug; 339():117932. PubMed ID: 37058924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag.
    Chen L; Xu J; Yu X; Tian L; Wang R; Xu Z
    Front Chem; 2021; 9():574722. PubMed ID: 33738275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.