These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35217460)

  • 1. Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples.
    Zhang F; Li Y; Li X; Liu R; Sang Y; Wang X; Wang S
    Food Chem; 2022 Aug; 384():132412. PubMed ID: 35217460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement.
    Bener M; Şen FB; Apak R
    Talanta; 2018 Sep; 187():148-155. PubMed ID: 29853028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay.
    An P; Xue X; Rao H; Wang J; Gao M; Wang H; Luo M; Liu X; Xue Z; Lu X
    Anal Chim Acta; 2020 Aug; 1125():114-127. PubMed ID: 32674757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric detection of total antioxidants in green tea with oxidase-mimetic CoOOH nanorings.
    Zhang J; Li Y; Gong X; Wang Y; Fu W
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112711. PubMed ID: 35907355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme.
    Zhuang Z; Zhang C; Yu Z; Liu W; Zhong Y; Zhang J; Xu Z
    Mikrochim Acta; 2022 Jul; 189(8):293. PubMed ID: 35881205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive detection of glucose in human urine using a color-generating copper NanoZyme.
    Naveen Prasad S; Weerathunge P; Karim MN; Anderson S; Hashmi S; Mariathomas PD; Bansal V; Ramanathan R
    Anal Bioanal Chem; 2021 Feb; 413(5):1279-1291. PubMed ID: 33399880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by In Situ AuNP Formation.
    Calabria D; Guardigli M; Severi P; Trozzi I; Pace A; Cinti S; Zangheri M; Mirasoli M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food.
    Han X; Liu L; Gong H; Luo L; Han Y; Fan J; Xu C; Yue T; Wang J; Zhang W
    Food Chem; 2022 Mar; 371():131115. PubMed ID: 34555710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au nanoparticle-hydrogel nanozyme-based colorimetric detection for on-site monitoring of mercury in river water.
    Ko E; Hur W; Son SE; Seong GH; Han DK
    Mikrochim Acta; 2021 Oct; 188(11):382. PubMed ID: 34657212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine V
    Wang Q; Ding Y; Dahlgren RA; Sun Y; Gu J; Li Y; Liu T; Wang X
    Anal Chim Acta; 2023 Apr; 1252():341072. PubMed ID: 36935159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk.
    Shen Y; Wei Y; Liu Z; Nie C; Ye Y
    Mikrochim Acta; 2022 May; 189(6):233. PubMed ID: 35622176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual detection of multiple antioxidants based on three chloroauric acid/Au-Ag nanocubes.
    Li L; Li S; Yu X; Chen Z
    Mikrochim Acta; 2021 Mar; 188(4):122. PubMed ID: 33694068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic nanozyme mediated urine glucose monitoring through discriminant analysis of colorimetric signal.
    Naveen Prasad S; Anderson SR; Joglekar MV; Hardikar AA; Bansal V; Ramanathan R
    Biosens Bioelectron; 2022 Sep; 212():114386. PubMed ID: 35635971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric method transforms into highly sensitive homogeneous voltammetric sensing strategy for mercury ion based on mercury-stimulated Ti
    Liu T; Zhou R; Wu K; Zhu G
    Anal Chim Acta; 2023 Apr; 1250():340975. PubMed ID: 36898821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of AuNPs/Cu,I-CD-based colorimetric sensor: Catalytic oxidation of TBHQ and the catalytic inhibition of HCHO.
    Li Q; Yang D; Tammina SK; Yang Y
    Food Chem; 2022 Mar; 373(Pt B):131438. PubMed ID: 34741967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric determination of Pb
    Xie ZJ; Shi MR; Wang LY; Peng CF; Wei XL
    Mikrochim Acta; 2020 Apr; 187(4):255. PubMed ID: 32239351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum Nanozyme-Enabled Colorimetric Determination of Total Antioxidant Level in Saliva.
    Pedone D; Moglianetti M; Lettieri M; Marrazza G; Pompa PP
    Anal Chem; 2020 Jul; 92(13):8660-8664. PubMed ID: 32483973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts.
    Bener M; Ozyürek M; Güçlü K; Apak R
    Anal Chem; 2010 May; 82(10):4252-8. PubMed ID: 20415438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins.
    Leng Y; Cheng J; Liu C; Wang D; Lu Z; Ma C; Zhang M; Dong Y; Xing X; Yao L; Chen Z
    Mikrochim Acta; 2021 Jul; 188(8):249. PubMed ID: 34254194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants.
    Jing W; Cui X; Kong F; Wei W; Li Y; Fan L; Li X
    Analyst; 2021 Jan; 146(1):207-212. PubMed ID: 33089838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.