These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 35218329)

  • 1. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications.
    Liu Z; Fu S; Liu X; Narita A; Samorì P; Bonn M; Wang HI
    Adv Sci (Weinh); 2022 Jul; 9(19):e2106055. PubMed ID: 35218329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteroatom-Doped Nanographenes with Structural Precision.
    Wang XY; Yao X; Narita A; Müllen K
    Acc Chem Res; 2019 Sep; 52(9):2491-2505. PubMed ID: 31478641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photomodulation of Charge Transport in All-Semiconducting 2D-1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect.
    Liu Z; Qiu H; Wang C; Chen Z; Zyska B; Narita A; Ciesielski A; Hecht S; Chi L; Müllen K; Samorì P
    Adv Mater; 2020 Jul; 32(26):e2001268. PubMed ID: 32378243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting.
    Yan Y; Zhai D; Liu Y; Gong J; Chen J; Zan P; Zeng Z; Li S; Huang W; Chen P
    ACS Nano; 2020 Jan; 14(1):1185-1195. PubMed ID: 31934740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D-1D mixed-dimensional heterostructures: progress, device applications and perspectives.
    Huang PY; Qin JK; Zhu CY; Zhen L; Xu CY
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34479213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Based Mixed-Dimensional van der Waals Heterostructures for Advanced Optoelectronics.
    Zhang Z; Lin P; Liao Q; Kang Z; Si H; Zhang Y
    Adv Mater; 2019 Sep; 31(37):e1806411. PubMed ID: 31503377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processed Graphene-Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation.
    Liu Z; Qiu H; Fu S; Wang C; Yao X; Dixon AG; Campidelli S; Pavlica E; Bratina G; Zhao S; Rondin L; Lauret JS; Narita A; Bonn M; Müllen K; Ciesielski A; Wang HI; Samorì P
    J Am Chem Soc; 2021 Oct; 143(41):17109-17116. PubMed ID: 34617738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges.
    Tan T; Jiang X; Wang C; Yao B; Zhang H
    Adv Sci (Weinh); 2020 Jun; 7(11):2000058. PubMed ID: 32537415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives.
    Liu J; Feng X
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23386-23401. PubMed ID: 32720441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices.
    Chen Z; Narita A; Müllen K
    Adv Mater; 2020 Nov; 32(45):e2001893. PubMed ID: 32945038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant energy transfer in a van der Waals stacked MoS
    Roy R; Thapa R; Biswas S; Saha S; Ghorai UK; Sen D; Kumar EM; Kumar GS; Mazumder N; Roy D; Chattopadhyay KK
    Nanoscale; 2018 Sep; 10(35):16822-16829. PubMed ID: 30167606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printable Transfer-Free and Wafer-Size MoS
    Liu Q; Cook B; Gong M; Gong Y; Ewing D; Casper M; Stramel A; Wu J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12728-12733. PubMed ID: 28322041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes.
    Zhou K; Wang L; Wang R; Wang C; Tang C
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysics of nanographenes: from polycyclic aromatic hydrocarbons to graphene nanoribbons.
    Drummer MC; Singh V; Gupta N; Gesiorski JL; Weerasooriya RB; Glusac KD
    Photosynth Res; 2022 Feb; 151(2):163-184. PubMed ID: 33963981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence.
    Dervishi E; Ji Z; Htoon H; Sykora M; Doorn SK
    Nanoscale; 2019 Sep; 11(35):16571-16581. PubMed ID: 31460557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide.
    Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S
    Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Graphene-Based Architectures and Their Applications.
    Yuan Z; Xiao X; Li J; Zhao Z; Yu D; Li Q
    Adv Sci (Weinh); 2018 Feb; 5(2):1700626. PubMed ID: 29619311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes.
    Gaurav A; Jain A; Tripathi SK
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fano Resonance and Incoherent Interlayer Excitons in Molecular van der Waals Heterostructures.
    Lien-Medrano CR; Bonafé FP; Yam CY; Palma CA; Sánchez CG; Frauenheim T
    Nano Lett; 2022 Feb; 22(3):911-917. PubMed ID: 35040646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.