These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35218474)

  • 21. A rhodamine-based fluorescent probe for detecting Hg(2+) in a fully aqueous environment.
    Chen X; Meng X; Wang S; Cai Y; Wu Y; Feng Y; Zhu M; Guo Q
    Dalton Trans; 2013 Oct; 42(41):14819-25. PubMed ID: 23986178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rhodamine-based "turn-on" fluorescent probe for Fe3+ in aqueous solution.
    Ji S; Meng X; Ye W; Feng Y; Sheng H; Cai Y; Liu J; Zhu X; Guo Q
    Dalton Trans; 2014 Jan; 43(4):1583-8. PubMed ID: 24217856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new rhodamine-based fluorescent chemodosimeter for mercuric ions in water media.
    Quy PT; Hien NK; Bao NC; Nhan DT; Khanh DV; Nhung NT; Tung TQ; Luyen ND; Quang DT
    Luminescence; 2015 May; 30(3):325-9. PubMed ID: 25066926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new "off-on" fluorescent probe for Al(3+) in aqueous solution based on rhodamine B and its application to bioimaging.
    Huang Q; Zhang Q; Wang E; Zhou Y; Qiao H; Pang L; Yu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():70-6. PubMed ID: 26196932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Fluorescent Lanthanide Salen Complexes: Photophysical Properties, Excited-State Dynamics, and Bioimaging.
    Yao Y; Yin HY; Ning Y; Wang J; Meng YS; Huang X; Zhang W; Kang L; Zhang JL
    Inorg Chem; 2019 Feb; 58(3):1806-1814. PubMed ID: 30576111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tricorn-rhodamine fluorescent chemosensor for detection of Co
    Li J; Han S
    Luminescence; 2017 Dec; 32(8):1448-1455. PubMed ID: 28590051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new rhodamine based colorimetric 'off-on' fluorescence sensor selective for Pd2+ along with the first bound X-ray crystal structure.
    Goswami S; Sen D; Das NK; Fun HK; Quah CK
    Chem Commun (Camb); 2011 Aug; 47(32):9101-3. PubMed ID: 21731939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ratiometric fluorescent detection of Cu
    Liu N; Hao J; Chen L; Song Y; Wang L
    Luminescence; 2019 Mar; 34(2):193-199. PubMed ID: 30690933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions.
    Cui P; Jiang X; Sun J; Zhang Q; Gao F
    Methods Appl Fluoresc; 2017 Apr; 5(2):024009. PubMed ID: 28452333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.
    Zhou P; Ning C; Alsaedi A; Han K
    Chemphyschem; 2016 Oct; 17(19):3139-3145. PubMed ID: 27459670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodamine-based fluorescent probe for Al3+ through time-dependent PET-CHEF-FRET processes and its cell staining application.
    Sahana A; Banerjee A; Lohar S; Sarkar B; Mukhopadhyay SK; Das D
    Inorg Chem; 2013 Apr; 52(7):3627-33. PubMed ID: 23485146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hg2+ selective fluorescent and colorimetric sensor: its crystal structure and application to bioimaging.
    Chen X; Nam SW; Jou MJ; Kim Y; Kim SJ; Park S; Yoon J
    Org Lett; 2008 Nov; 10(22):5235-8. PubMed ID: 18954064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified beta-cyclodextrins.
    Hasegawa T; Kondo Y; Koizumi Y; Sugiyama T; Takeda A; Ito S; Hamada F
    Bioorg Med Chem; 2009 Aug; 17(16):6015-9. PubMed ID: 19616959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational analyses of singlet-singlet and singlet-triplet transitions in mononuclear gold-capped carbon-rich conjugated complexes.
    Cao Z; Zhang Q
    J Comput Chem; 2005 Sep; 26(12):1214-21. PubMed ID: 15957180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Single Fluorescent Chemosensor for Simultaneous Discriminative Detection of Gaseous Phosgene and a Nerve Agent Mimic.
    Zeng L; Zeng H; Jiang L; Wang S; Hou JT; Yoon J
    Anal Chem; 2019 Sep; 91(18):12070-12076. PubMed ID: 31414590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RBAP, a rhodamine B-based derivative: synthesis, crystal structure analysis, molecular simulation, and its application as a selective fluorescent chemical sensor for Sn2+.
    Bao X; Cao X; Nie X; Jin Y; Zhou B
    Molecules; 2014 Jun; 19(6):7817-31. PubMed ID: 24962388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of Fluorescent Imaging of Se (IV) in Living Cells Using a Turn-on Fluorescent Probe Based on a Rhodamine Spirolactame Derivative.
    Guan M; Mi H; Xu H; Fei Q; Shan H; Huan Y; Lv S; Feng G
    J Fluoresc; 2017 Mar; 27(2):611-618. PubMed ID: 27981405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment.
    Savarese M; Aliberti A; De Santo I; Battista E; Causa F; Netti PA; Rega N
    J Phys Chem A; 2012 Jul; 116(28):7491-7. PubMed ID: 22667332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.