These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35218474)

  • 61. "Covalent-Assembly"-Based Fluorescent Probe for Detection of a Nerve-Agent Mimic (DCP) via Lossen Rearrangement.
    Huo B; Du M; Shen A; Li M; Lai Y; Bai X; Gong A; Yang Y
    Anal Chem; 2019 Sep; 91(17):10979-10983. PubMed ID: 31373196
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cu2+-selective ratiometric and "off-on" sensor based on the rhodamine derivative bearing pyrene group.
    Zhou Y; Wang F; Kim Y; Kim SJ; Yoon J
    Org Lett; 2009 Oct; 11(19):4442-5. PubMed ID: 19775186
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor.
    Huang J; Xu Y; Qian X
    J Org Chem; 2009 Mar; 74(5):2167-70. PubMed ID: 19209877
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.
    Xie P; Guo F; Wang L; Yang S; Yao D; Yang G
    J Fluoresc; 2015 Mar; 25(2):319-25. PubMed ID: 25597044
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Binding of rhodamine B and kiton red S to cucurbit[7]uril: density functional investigations.
    Khedkar JK; Jagtap KK; Pinjari RV; Ray AK; Gejji SP
    J Mol Model; 2012 Aug; 18(8):3743-50. PubMed ID: 22392431
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor.
    Rasheed T; Nabeel F; Bilal M; Zhao YP; Adeel M; Iqbal HMN
    Math Biosci Eng; 2019 Mar; 16(4):1861-1873. PubMed ID: 31137189
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new fluorescent and colorimetric probe for Cu2+ in live cells.
    Liu WY; Li HY; Zhao BX; Miao JY
    Analyst; 2012 Aug; 137(15):3466-9. PubMed ID: 22701875
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A unique rectilinearly π-extended rhodamine dye with large Stokes shift and near-infrared fluorescence for bioimaging.
    Liu C; Jiao X; Wang Q; Huang K; He S; Zhao L; Zeng X
    Chem Commun (Camb); 2017 Sep; 53(77):10727-10730. PubMed ID: 28920595
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(II) ion and their FRET mediated signaling.
    Biswal B; Bag B
    Org Biomol Chem; 2013 Aug; 11(30):4975-92. PubMed ID: 23783407
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of spectral heterogeneity of prodan and laurdan solutions on the transfer of electronic energy to octadecyl rhodamine B.
    Kozyra KA; Heldt JR; Heldt J
    Biophys Chem; 2006 Apr; 121(1):57-64. PubMed ID: 16443320
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rhodamine Diaminomaleonitrile Conjugate as a Novel Colorimetric Fluorescent Sensor for Recognition of Cd
    Sakthivel P; Sekar K; Sivaraman G; Singaravadivel S
    J Fluoresc; 2017 May; 27(3):1109-1115. PubMed ID: 28220278
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An ESIPT fluorescent probe and a nanofiber platform for selective and sensitive detection of a nerve gas mimic.
    Chen L; Oh H; Wu D; Kim MH; Yoon J
    Chem Commun (Camb); 2018 Feb; 54(18):2276-2279. PubMed ID: 29435524
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Rhodamine-Based Fluorescent Chemosensor for the Detection of Pb
    Su W; Yuan S; Wang E
    J Fluoresc; 2017 Sep; 27(5):1871-1875. PubMed ID: 28577240
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Two new rhodamine-based fluorescent chemosensors for Fe3+ in aqueous solution.
    Liu Y; Xu Z; Wang J; Zhang D; Ye Y; Zhao Y
    Luminescence; 2014 Nov; 29(7):945-51. PubMed ID: 24700778
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synthesis of near-infrared fluorescent rhodamines via an S
    Wang Q; Huang K; Cai S; Liu C; Jiao X; He S; Zhao L; Zeng X
    Org Biomol Chem; 2018 Oct; 16(39):7163-7169. PubMed ID: 30246856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. FRET-based sensor for imaging chromium(III) in living cells.
    Zhou Z; Yu M; Yang H; Huang K; Li F; Yi T; Huang C
    Chem Commun (Camb); 2008 Aug; (29):3387-9. PubMed ID: 18633498
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A new Rhodamine B-based 'on-off' chemical sensor with high selectivity and sensitivity toward Fe(3+) and its imaging in living cells.
    Bao X; Shi J; Nie X; Zhou B; Wang X; Zhang L; Liao H; Pang T
    Bioorg Med Chem; 2014 Sep; 22(17):4826-35. PubMed ID: 25065941
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation of Fluorescence Resonance Energy Transfer between Fluorescein and Rhodamine 6G.
    Saha J; Datta Roy A; Dey D; Chakraborty S; Bhattacharjee D; Paul PK; Hussain SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():143-9. PubMed ID: 25956326
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cu2+-selective naked-eye and fluorescent probe: its crystal structure and application in bioimaging.
    Yu F; Zhang W; Li P; Xing Y; Tong L; Ma J; Tang B
    Analyst; 2009 Sep; 134(9):1826-33. PubMed ID: 19684906
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A thiophen-thiooxorhodamine conjugate fluorescent probe for detecting mercury in aqueous media and living cells.
    Zhou Y; You XY; Fang Y; Li JY; Liu K; Yao C
    Org Biomol Chem; 2010 Nov; 8(21):4819-22. PubMed ID: 20859604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.