These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 35218590)
1. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. Liu Z; Wang J; Zhou Y; Zhang Y; Qin A; Yu X; Zhao Z; Wu R; Guo C; Bawa G; Rochaix JD; Sun X Plant J; 2022 Apr; 110(1):7-22. PubMed ID: 35218590 [TBL] [Abstract][Full Text] [Related]
2. Developmental profiling of gene expression in soybean trifoliate leaves and cotyledons. Brown AV; Hudson KA BMC Plant Biol; 2015 Jul; 15():169. PubMed ID: 26149852 [TBL] [Abstract][Full Text] [Related]
3. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of the Wen S; Li J; Hao Z; Wei L; Ma J; Zong Y; Li H PeerJ; 2022; 10():e12615. PubMed ID: 35178288 [TBL] [Abstract][Full Text] [Related]
5. Similarities and Differences of Photosynthesis Establishment Related mRNAs and Novel lncRNAs in Early Seedlings (Coleoptile/Cotyledon vs. True Leaf) of Rice and Shi Y; Chen J; Hou X Front Genet; 2020; 11():565006. PubMed ID: 33093843 [TBL] [Abstract][Full Text] [Related]
6. Physiological Adaptive Strategies of Oil Seed Crop Wang Y; Jie W; Peng X; Hua X; Yan X; Zhou Z; Lin J Front Plant Sci; 2018; 9():1939. PubMed ID: 30687346 [No Abstract] [Full Text] [Related]
7. Transcription factors and glyoxylate cycle genes prominent in the transition of soybean cotyledons to the first functional leaves of the seedling. Shamimuzzaman M; Vodkin L Funct Integr Genomics; 2014 Dec; 14(4):683-96. PubMed ID: 25070765 [TBL] [Abstract][Full Text] [Related]
8. Ectopic Vascular Induction in Arabidopsis Cotyledons for Sequential Analysis of Phloem Differentiation. Nurani AM; Kondo Y; Fukuda H Methods Mol Biol; 2018; 1830():149-159. PubMed ID: 30043370 [TBL] [Abstract][Full Text] [Related]
9. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis. Wang X; Xie B; Zhu M; Zhang Z; Hong Z Plant Mol Biol; 2012 Jan; 78(1-2):31-44. PubMed ID: 22058024 [TBL] [Abstract][Full Text] [Related]
10. Snowy cotyledon 2: the identification of a zinc finger domain protein essential for chloroplast development in cotyledons but not in true leaves. Albrecht V; Ingenfeld A; Apel K Plant Mol Biol; 2008 Apr; 66(6):599-608. PubMed ID: 18209955 [TBL] [Abstract][Full Text] [Related]
11. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Kim JH; Choi D; Kende H Plant J; 2003 Oct; 36(1):94-104. PubMed ID: 12974814 [TBL] [Abstract][Full Text] [Related]
12. The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding. Gruber M; Alahakoon U; Taheri A; Nagubushana N; Zhou R; Aung B; Sharpe A; Hannoufa A; Bonham-Smith P; Hegedus D DD BMC Plant Biol; 2018 Apr; 18(1):64. PubMed ID: 29661140 [TBL] [Abstract][Full Text] [Related]
13. Developmental anatomy of cotyledons and leaves in has mutant of Arabidopsis thaliana. Janosević D; Uzelac B; Stojicić D; Budimir S Protoplasma; 2007; 231(1-2):7-13. PubMed ID: 17602274 [TBL] [Abstract][Full Text] [Related]
14. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Kim JY; Symeonidi E; Pang TY; Denyer T; Weidauer D; Bezrutczyk M; Miras M; Zöllner N; Hartwig T; Wudick MM; Lercher M; Chen LQ; Timmermans MCP; Frommer WB Plant Cell; 2021 May; 33(3):511-530. PubMed ID: 33955487 [TBL] [Abstract][Full Text] [Related]
15. Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. Tan TT; Endo H; Sano R; Kurata T; Yamaguchi M; Ohtani M; Demura T Plant Physiol; 2018 Jan; 176(1):773-789. PubMed ID: 29133368 [TBL] [Abstract][Full Text] [Related]
16. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings. Nito K; Kajiyama T; Unten-Kobayashi J; Fujii A; Mochizuki N; Kambara H; Nagatani A Plant Cell Physiol; 2015 Jul; 56(7):1306-19. PubMed ID: 25907567 [TBL] [Abstract][Full Text] [Related]
17. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Semiarti E; Ueno Y; Tsukaya H; Iwakawa H; Machida C; Machida Y Development; 2001 May; 128(10):1771-83. PubMed ID: 11311158 [TBL] [Abstract][Full Text] [Related]
18. Modulation of the venation pattern of cotyledons of transgenic tobacco for the tumorigenic 6b gene of Agrobacterium tumefaciens AKE10. Kakiuchi Y; Takahashi S; Wabiko H J Plant Res; 2007 Mar; 120(2):259-68. PubMed ID: 17136474 [TBL] [Abstract][Full Text] [Related]
19. An Arabidopsis cotyledon-specific albino locus: a possible role in 16S rRNA maturation. Yamamoto YY; Puente P; Deng XW Plant Cell Physiol; 2000 Jan; 41(1):68-76. PubMed ID: 10750710 [TBL] [Abstract][Full Text] [Related]
20. The cotyledons produce sufficient FT protein to induce flowering: evidence from cotyledon micrografting in Arabidopsis. Yoo SJ; Hong SM; Jung HS; Ahn JH Plant Cell Physiol; 2013 Jan; 54(1):119-28. PubMed ID: 23204014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]