BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35219019)

  • 21. Distinct dual enzyme-like activities of Fe-N-C single-atom nanozymes enable discriminative detection of cellular glutathione.
    Cai C; Zhu C; Lv L; Huang P; Mao J; Wu FY; Deng KY
    Chem Commun (Camb); 2023 Sep; 59(75):11252-11255. PubMed ID: 37661716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catechol oxidase nanozyme based colorimetric sensors array for highly selective distinction among multiple catecholamines.
    Yin JH; Liu M; Lan C; Chu B; Meng L; Xu N
    Anal Chim Acta; 2023 Oct; 1279():341823. PubMed ID: 37827622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing.
    Wu R; Sun M; Liu X; Qin F; Zhang X; Qian Z; Huang J; Li Y; Tan T; Chen W; Chen Z
    Anal Chem; 2022 Oct; 94(41):14308-14316. PubMed ID: 36194751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO
    Huang W; Deng Y; He Y
    Biosens Bioelectron; 2017 May; 91():89-94. PubMed ID: 27992804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection.
    Wu W; Huang L; Zhu X; Chen J; Chao D; Li M; Wu S; Dong S
    Chem Sci; 2022 Apr; 13(16):4566-4572. PubMed ID: 35656135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient carbon supported Co-Ir nanozyme for the determination of total antioxidant capacity in foods.
    Li S; Keoingthong P; Xu J; Yang Y; Shen J; Xu Y; Zhang L; Xia X; Cao X; Wang S; Chen Z
    Biosens Bioelectron; 2023 Sep; 236():115416. PubMed ID: 37245461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colorimetric sensing strategy for detection of cysteine, phenol cysteine, and phenol based on synergistic doping of multiple heteroatoms into sponge-like Fe/NPC nanozymes.
    Xue Y; Zhong H; Liu B; Zhao R; Ma J; Chen Z; Li K; Zuo X
    Anal Bioanal Chem; 2022 Jun; 414(14):4217-4225. PubMed ID: 35462599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peroxidase-like activity of Ru-N-C nanozymes in colorimetric assay of acetylcholinesterase activity.
    Yan B; Wang F; He S; Liu W; Zhang C; Chen C; Lu Y
    Anal Chim Acta; 2022 Jan; 1191():339362. PubMed ID: 35033267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells.
    Sun L; Li C; Yan Y; Yu Y; Zhao H; Zhou Z; Wang F; Feng Y
    Anal Chim Acta; 2021 Oct; 1180():338856. PubMed ID: 34538322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dual responsive colorimetric sensor based on polyazomethine and ascorbic acid for the detection of Al (III) and Fe (II) ions.
    Duru Kamaci U; Kamaci M; Peksel A
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119650. PubMed ID: 33744699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.
    Yang C; Zhang H
    Mikrochim Acta; 2023 Oct; 190(11):451. PubMed ID: 37880465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection.
    Wu D; Hu N; Liu J; Fan G; Li X; Sun J; Dai C; Suo Y; Li G; Wu Y
    Talanta; 2018 Dec; 190():103-109. PubMed ID: 30172485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria.
    Lu Z; Lu N; Xiao Y; Zhang Y; Tang Z; Zhang M
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11156-11166. PubMed ID: 35212535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerated and precise identification of antioxidants and pesticides using a smartphone-based colorimetric sensor array.
    Luan T; Zhang Y; Song Z; Zhou Y; Ma CB; Lu L; Du Y
    Talanta; 2024 May; 277():126275. PubMed ID: 38810380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferrin guided quasi-nanocuboid as tetra-enzymic mimics and biosensing applications.
    Chen Q; Hu B; Zhang D; Ren Q; Wang M; Li P; Zhang Y
    Talanta; 2022 Apr; 240():123138. PubMed ID: 34998142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine.
    Feng M; Zhang Q; Chen X; Deng D; Xie X; Yang X
    Biosens Bioelectron; 2022 Aug; 210():114294. PubMed ID: 35462296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing.
    Chen Y; Jiao L; Yan H; Xu W; Wu Y; Wang H; Gu W; Zhu C
    Anal Chem; 2020 Oct; 92(19):13518-13524. PubMed ID: 32869631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning Local Coordination Environments of Manganese Single-Atom Nanozymes with Multi-Enzyme Properties for Selective Colorimetric Biosensing.
    Wang Y; Cho A; Jia G; Cui X; Shin J; Nam I; Noh KJ; Park BJ; Huang R; Han JW
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300119. PubMed ID: 36780128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single Iron Site Nanozyme for Ultrasensitive Glucose Detection.
    Chen M; Zhou H; Liu X; Yuan T; Wang W; Zhao C; Zhao Y; Zhou F; Wang X; Xue Z; Yao T; Xiong C; Wu Y
    Small; 2020 Aug; 16(31):e2002343. PubMed ID: 32597016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Atom Fe-Anchored Nano-Diamond With Enhanced Dual-Enzyme Mimicking Performance for H
    Liu Y; Yan J; Huang Y; Sun Z; Zhang H; Fu L; Li X; Jin Y
    Front Bioeng Biotechnol; 2021; 9():790849. PubMed ID: 35047488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.