These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35219019)

  • 41. Single Iron Site Nanozyme for Ultrasensitive Glucose Detection.
    Chen M; Zhou H; Liu X; Yuan T; Wang W; Zhao C; Zhao Y; Zhou F; Wang X; Xue Z; Yao T; Xiong C; Wu Y
    Small; 2020 Aug; 16(31):e2002343. PubMed ID: 32597016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-Atom Fe-Anchored Nano-Diamond With Enhanced Dual-Enzyme Mimicking Performance for H
    Liu Y; Yan J; Huang Y; Sun Z; Zhang H; Fu L; Li X; Jin Y
    Front Bioeng Biotechnol; 2021; 9():790849. PubMed ID: 35047488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetic Flower-like Fe-Doped CoO Nanocomposites with Dual Enzyme-like Activities for Facile and Sensitive Determination of H
    Lian J; He Y; Li N; Liu P; Liu Z; Liu Q
    Inorg Chem; 2021 Feb; 60(3):1893-1901. PubMed ID: 33439641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Axial N Ligand-Modulated Ultrahigh Activity and Selectivity Hyperoxide Activation over Single-Atoms Nanozymes.
    Zhang HC; Cui PX; Xie DH; Wang YJ; Wang P; Sheng GP
    Adv Sci (Weinh); 2023 Jan; 10(3):e2205681. PubMed ID: 36446629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fe-Based Single-Atom Nanozyme with Superior Peroxidase-Mimicking Activity for Enhanced Ultrasensitive Biosensing.
    Chi L; Zhang Y; Hua Y; Xu Q; Lv M; Wang H; Xie J; Yang S; Yong Y
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6126-6134. PubMed ID: 34229813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols.
    Sun L; Yan Y; Chen S; Zhou Z; Tao W; Li C; Feng Y; Wang F
    Anal Bioanal Chem; 2022 Feb; 414(5):1857-1865. PubMed ID: 35028690
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A colorimetric sensor array based on sulfuric acid assisted KMnO
    Qiao L; Qian S; Wang Y; Lin H
    Talanta; 2018 May; 181():305-310. PubMed ID: 29426516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review.
    Ye ML; Zhu Y; Lu Y; Gan L; Zhang Y; Zhao YG
    Talanta; 2021 Aug; 230():122299. PubMed ID: 33934768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mixed-Valence Ce-BPyDC Metal-Organic Framework with Dual Enzyme-like Activities for Colorimetric Biosensing.
    Luo L; Huang L; Liu X; Zhang W; Yao X; Dou L; Zhang X; Nian Y; Sun J; Wang J
    Inorg Chem; 2019 Sep; 58(17):11382-11388. PubMed ID: 31402664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A bifunctional metal organic framework of type Fe(III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose.
    Zhao Z; Pang J; Liu W; Lin T; Ye F; Zhao S
    Mikrochim Acta; 2019 Apr; 186(5):295. PubMed ID: 31016397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase.
    Wang Y; Yang Y; Liu W; Ding F; Zou P; Wang X; Zhao Q; Rao H
    Mikrochim Acta; 2019 Mar; 186(4):246. PubMed ID: 30879229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.
    Zhang L; Wang G; Wu D; Xiong C; Zheng L; Ding Y; Lu H; Zhang G; Qiu L
    Biosens Bioelectron; 2018 Feb; 100():235-241. PubMed ID: 28923558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A colorimetric sensor of cysteine based on self-assembly nanostructures of Fe
    Xue Z; Wang X; Rao H; Liu X; Lu X
    Anal Biochem; 2017 Oct; 534():1-9. PubMed ID: 28693991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rh single-atom nanozymes for efficient ascorbic acid oxidation and detection.
    Shi X; Li J; Xiong Y; Liu Z; Zhan J; Cai B
    Nanoscale; 2023 Apr; 15(14):6629-6635. PubMed ID: 36951617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Black phosphorus quantum dots are useful oxidase mimics for colorimetric determination of biothiols.
    Ren L; Li H; Du J
    Mikrochim Acta; 2020 Mar; 187(4):229. PubMed ID: 32170465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of a colorimetric sensor array based on the coupling reaction to identify phenols.
    Zhong H; Xue Y; Liu B; Chen Z; Li K; Zuo X
    Anal Methods; 2022 Mar; 14(9):892-899. PubMed ID: 35171157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic catalysts of iron-based metal-organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing.
    Wang XN; Zhao Y; Li JL; Pang JD; Wang Q; Li B; Zhou HC
    Dalton Trans; 2021 Mar; 50(11):3854-3861. PubMed ID: 33656021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Triple-enzyme mimetic activity of Fe
    Xing Y; Chen M; Zhao Y; Xu J; Hou X
    Mikrochim Acta; 2021 Dec; 189(1):12. PubMed ID: 34866160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Smartphone-based colorimetric detection of glutathione.
    Vobornikova I; Pohanka M
    Neuro Endocrinol Lett; 2016 Dec; 37(Suppl1):139-143. PubMed ID: 28263542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A feasible strategy for designing cytochrome P450-mimic sandwich-like single-atom nanozymes toward electrochemical CO
    Sun H; Liu JY
    J Colloid Interface Sci; 2024 May; 661():482-492. PubMed ID: 38308888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.