BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35219187)

  • 21. Smart grading of diabetic retinopathy: an intelligent recommendation-based fine-tuned EfficientNetB0 framework.
    Anand V; Koundal D; Alghamdi WY; Alsharbi BM
    Front Artif Intell; 2024; 7():1396160. PubMed ID: 38694880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis.
    Cao P; Ren F; Wan C; Yang J; Zaiane O
    Comput Med Imaging Graph; 2018 Nov; 69():112-124. PubMed ID: 30237145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Image Quality Assessment Guided Collaborative Learning of Image Enhancement and Classification for Diabetic Retinopathy Grading.
    Hou Q; Cao P; Jia L; Chen L; Yang J; Zaiane OR
    IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy.
    Narayanan BN; Hardie RC; De Silva MS; Kueterman NK
    J Med Imaging (Bellingham); 2020 May; 7(3):034501. PubMed ID: 32613029
    [No Abstract]   [Full Text] [Related]  

  • 27. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.
    Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR
    Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis.
    Maji D; Sekh AA
    J Med Syst; 2020 Sep; 44(10):180. PubMed ID: 32870389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning.
    Burlina P; Paul W; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2022 Feb; 140(2):185-189. PubMed ID: 34967890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing deep learning pre-trained networks on diabetic retinopathy fundus photographs with SLIC-G.
    Lim WX; Chen Z
    Med Biol Eng Comput; 2024 Apr; ():. PubMed ID: 38649629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features.
    Harangi B; Toth J; Baran A; Hajdu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2699-2702. PubMed ID: 31946452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facilitated Versus Self-guided Training of Non-ophthalmologists for Grading Pre-plus and Plus Disease Using Fundus Images for Retinopathy of Prematurity Screening.
    Raufi NN; Morris CK; Freedman SF; Wallace DK; Prakalapakorn SG
    J Pediatr Ophthalmol Strabismus; 2016 May; 53(3):179-85. PubMed ID: 27224953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CoT-XNet: contextual transformer with Xception network for diabetic retinopathy grading.
    Zhao S; Wu Y; Tong M; Yao Y; Qian W; Qi S
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36322995
    [No Abstract]   [Full Text] [Related]  

  • 38. A Deep Learning Based Approach for Grading of Diabetic Retinopathy Using Large Fundus Image Dataset.
    Mehboob A; Akram MU; Alghamdi NS; Abdul Salam A
    Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A multimodal medical image contrastive learning algorithm with domain adaptive denormalization].
    Wen H; Zhao Y; Cai X; Liu A; Yao Y; Fu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Jun; 40(3):482-491. PubMed ID: 37380387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.