These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 35219188)
1. ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data. Chatterjee S; Breitkopf M; Sarasaen C; Yassin H; Rose G; Nürnberger A; Speck O Comput Biol Med; 2022 Apr; 143():105321. PubMed ID: 35219188 [TBL] [Abstract][Full Text] [Related]
2. Sinogram upsampling using Primal-Dual UNet for undersampled CT and radial MRI reconstruction. Ernst P; Chatterjee S; Rose G; Speck O; Nürnberger A Neural Netw; 2023 Sep; 166():704-721. PubMed ID: 37604079 [TBL] [Abstract][Full Text] [Related]
3. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast. Rastogi A; Yalavarthy PK Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871 [TBL] [Abstract][Full Text] [Related]
4. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction. Oh C; Chung JY; Han Y Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376 [TBL] [Abstract][Full Text] [Related]
5. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Terpstra ML; Maspero M; d'Agata F; Stemkens B; Intven MPW; Lagendijk JJW; van den Berg CAT; Tijssen RHN Phys Med Biol; 2020 Aug; 65(15):155015. PubMed ID: 32408295 [TBL] [Abstract][Full Text] [Related]
6. Accelerated radial echo-planar spectroscopic imaging using golden angle view-ordering and compressed-sensing reconstruction with total variation regularization. Saucedo A; Macey PM; Thomas MA Magn Reson Med; 2021 Jul; 86(1):46-61. PubMed ID: 33604944 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052 [TBL] [Abstract][Full Text] [Related]
8. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction. Eo T; Shin H; Jun Y; Kim T; Hwang D Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061 [TBL] [Abstract][Full Text] [Related]
9. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Singh D; Monga A; de Moura HL; Zhang X; Zibetti MVW; Regatte RR Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760114 [TBL] [Abstract][Full Text] [Related]
10. Accelerated MRI with CIRcular Cartesian UnderSampling (CIRCUS): a variable density Cartesian sampling strategy for compressed sensing and parallel imaging. Liu J; Saloner D Quant Imaging Med Surg; 2014 Feb; 4(1):57-67. PubMed ID: 24649436 [TBL] [Abstract][Full Text] [Related]
11. Accelerating multi-echo chemical shift encoded water-fat MRI using model-guided deep learning. Li S; Shen C; Ding Z; She H; Du YP Magn Reson Med; 2022 Oct; 88(4):1851-1866. PubMed ID: 35649172 [TBL] [Abstract][Full Text] [Related]
12. Whole-heart cine MRI in a single breath-hold--a compressed sensing accelerated 3D acquisition technique for assessment of cardiac function. Wech T; Pickl W; Tran-Gia J; Ritter C; Beer M; Hahn D; Köstler H Rofo; 2014 Jan; 186(1):37-41. PubMed ID: 23996623 [TBL] [Abstract][Full Text] [Related]
13. Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale variational neural network reconstruction. Fotaki A; Fuin N; Nordio G; Velasco Jimeno C; Qi H; Emmanuel Y; Pushparajah K; Botnar RM; Prieto C Magn Reson Imaging; 2022 Oct; 92():120-132. PubMed ID: 35772584 [TBL] [Abstract][Full Text] [Related]
14. SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction. Liu F; Samsonov A; Chen L; Kijowski R; Feng L Magn Reson Med; 2019 Nov; 82(5):1890-1904. PubMed ID: 31166049 [TBL] [Abstract][Full Text] [Related]
15. Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction. Zhou B; Schlemper J; Dey N; Mohseni Salehi SS; Sheth K; Liu C; Duncan JS; Sofka M Med Image Anal; 2022 Oct; 81():102538. PubMed ID: 35926336 [TBL] [Abstract][Full Text] [Related]
16. Optimization of undersampling parameters for 3D intracranial compressed sensing MR angiography at 7 T. de Buck MHS; Jezzard P; Hess AT Magn Reson Med; 2022 Aug; 88(2):880-889. PubMed ID: 35344622 [TBL] [Abstract][Full Text] [Related]
17. A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series. Wech T; Ankenbrand MJ; Bley TA; Heidenreich JF Magn Reson Med; 2022 Feb; 87(2):972-983. PubMed ID: 34609026 [TBL] [Abstract][Full Text] [Related]
18. Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects. Fervers P; Zaeske C; Rauen P; Iuga AI; Kottlors J; Persigehl T; Sonnabend K; Weiss K; Bratke G Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766523 [TBL] [Abstract][Full Text] [Related]
19. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531 [TBL] [Abstract][Full Text] [Related]
20. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps. Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]