BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35219190)

  • 1. Functional characterization of the Pinellia ternata cytoplasmic class II small heat shock protein gene PtsHSP17.2 via promoter analysis and overexpression in tobacco.
    Tian C; Zhang Z; Huang Y; Xu J; Liu Z; Xiang Z; Zhao F; Xue J; Xue T; Duan Y
    Plant Physiol Biochem; 2022 Apr; 177():1-9. PubMed ID: 35219190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive in silico characterization of NAC transcription factor family of Pinellia ternata and functional analysis of PtNAC66 under high-temperature tolerance in transgenic Arabidopsis thaliana.
    Bo C; Liu D; Yang J; Ji M; Li Z; Zhu Y; Duan Y; Xue J; Xue T
    Plant Physiol Biochem; 2024 Mar; 208():108539. PubMed ID: 38513515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PtWRKY2, a WRKY transcription factor from Pinellia ternata confers heat tolerance in Arabidopsis.
    Liu D; Cui W; Bo C; Wang R; Zhu Y; Duan Y; Wang D; Xue J; Xue T
    Sci Rep; 2024 Jun; 14(1):13807. PubMed ID: 38877055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress.
    Zhu Y; Zhu G; Guo Q; Zhu Z; Wang C; Liu Z
    Int J Mol Sci; 2013 Oct; 14(10):20614-34. PubMed ID: 24132150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging.
    Singh S; Chopperla R; Shingote P; Chhapekar SS; Deshmukh R; Khan S; Padaria JC; Sharma TR; Solanke AU
    J Biotechnol; 2021 Aug; 336():10-24. PubMed ID: 34116128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin.
    Ma G; Zhang M; Xu J; Zhou W; Cao L
    Ecotoxicol Environ Saf; 2020 Oct; 202():110877. PubMed ID: 32574862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-expression of SlJA2 decreased heat tolerance of transgenic tobacco plants via salicylic acid pathway.
    Liu ZM; Yue MM; Yang DY; Zhu SB; Ma NN; Meng QW
    Plant Cell Rep; 2017 Apr; 36(4):529-542. PubMed ID: 28155114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.
    Zhou SM; Kong XZ; Kang HH; Sun XD; Wang W
    PLoS One; 2015; 10(4):e0122117. PubMed ID: 25906259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin.
    Das M; Chauhan H; Chhibbar A; Rizwanul Haq QM; Khurana P
    Transgenic Res; 2011 Apr; 20(2):231-46. PubMed ID: 20549349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco.
    Sun L; Liu Y; Kong X; Zhang D; Pan J; Zhou Y; Wang L; Li D; Yang X
    Plant Cell Rep; 2012 Aug; 31(8):1473-84. PubMed ID: 22534681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.
    Chen Y; Han Y; Zhang M; Zhou S; Kong X; Wang W
    PLoS One; 2016; 11(4):e0153494. PubMed ID: 27073898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.).
    Feng XH; Zhang HX; Ali M; Gai WX; Cheng GX; Yu QH; Yang SB; Li XX; Gong ZH
    Plant Physiol Biochem; 2019 Sep; 142():151-162. PubMed ID: 31284139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introgression of
    Jha RK; Mishra A
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011624
    [No Abstract]   [Full Text] [Related]  

  • 14. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco.
    Panzade KP; Vishwakarma H; Padaria JC
    Mol Biol Rep; 2020 May; 47(5):3821-3831. PubMed ID: 32367315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco.
    Zhu X; Wang Y; Liu Y; Zhou W; Yan B; Yang J; Shen Y
    PLoS One; 2018; 13(11):e0207277. PubMed ID: 30427910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-specific lipid transfer protein, NtLTPI.38, positively mediates heat tolerance by regulating photosynthetic ability and antioxidant capacity in tobacco.
    Song H; Yao P; Zhang S; Jia H; Yang Y; Liu L
    Plant Physiol Biochem; 2023 Jul; 200():107791. PubMed ID: 37243997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the promoter of pearl millet heat shock protein 10 (PgHsp10) in response to abiotic stresses in transgenic tobacco plants.
    Kummari D; Bhatnagar-Mathur P; Sharma KK; Vadez V; Palakolanu SR
    Int J Biol Macromol; 2020 Aug; 156():103-110. PubMed ID: 32294498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel
    Xu J; Du N; Dong T; Zhang H; Xue T; Zhao F; Zhao F; Duan Y; Xue J
    Front Plant Sci; 2023; 14():1206798. PubMed ID: 37849844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco.
    Gupta K; Jha B; Agarwal PK
    Mar Biotechnol (NY); 2014 Dec; 16(6):657-73. PubMed ID: 25022621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants.
    Khurana N; Chauhan H; Khurana P
    PLoS One; 2013; 8(1):e54418. PubMed ID: 23349883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.