These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35219234)

  • 1. Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation.
    Bingöl A; Türkyılmaz M; Özkan M
    Food Chem; 2022 Aug; 384():132518. PubMed ID: 35219234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of amino acid addition on the thermal stability of anthocyanins in pomegranate (Punica granatum L., cv. Hicaznar) and orange (Citrus sinensis L. Osbeck, cv. Valencia) juice blend.
    Türkyılmaz M; Hamzaoğlu F; Ünal H; Özkan M
    Food Chem; 2022 Feb; 370():131061. PubMed ID: 34547556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sweeteners on anthocyanin stability and colour properties of sour cherry and strawberry nectars during storage.
    Ertan K; Türkyılmaz M; Özkan M
    J Food Sci Technol; 2018 Oct; 55(10):4346-4355. PubMed ID: 30228434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of strawberry anthocyanins using high-speed counter-current chromatography and the copigmentation with catechin or epicatechin by high pressure processing.
    Zou H; Ma Y; Xu Z; Liao X; Chen A; Yang S
    Food Chem; 2018 May; 247():81-88. PubMed ID: 29277232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of plant growth temperature on antioxidant capacity in strawberry.
    Wang SY; Zheng W
    J Agric Food Chem; 2001 Oct; 49(10):4977-82. PubMed ID: 11600054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners.
    Ertan K; Türkyılmaz M; Özkan M
    Food Chem; 2020 Apr; 310():125856. PubMed ID: 31791723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultural system affects fruit quality and antioxidant capacity in strawberries.
    Wang SY; Zheng W; Galletta GJ
    J Agric Food Chem; 2002 Oct; 50(22):6534-42. PubMed ID: 12381146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins.
    Buchweitz M; Speth M; Kammerer DR; Carle R
    Food Chem; 2013 Dec; 141(3):2998-3006. PubMed ID: 23871051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams.
    Martinsen BK; Aaby K; Skrede G
    Food Chem; 2020 Jun; 316():126297. PubMed ID: 32044703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in the bioactive compound content at three ripening stages of strawberry fruit.
    Voća S; Zlabur JS; Dobričević N; Jakobek L; Seruga M; Galić A; Pliestić S
    Molecules; 2014 Jul; 19(7):10370-85. PubMed ID: 25036150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life.
    Chatham LA; Howard JE; Juvik JA
    Food Chem; 2020 Apr; 310():125734. PubMed ID: 31791725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit.
    Li D; Zhang X; Xu Y; Li L; Aghdam MS; Luo Z
    Food Chem; 2019 Aug; 289():112-120. PubMed ID: 30955592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of bioactive compounds content of 14 oriental strawberry cultivars.
    Kim SK; Kim DS; Kim DY; Chun C
    Food Chem; 2015 Oct; 184():196-202. PubMed ID: 25872444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sucrose and copigment sources on the major anthocyanins isolated from sour cherries.
    Türkyılmaz M; Hamzaoğlu F; Özkan M
    Food Chem; 2019 May; 281():242-250. PubMed ID: 30658754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the differences in the phenolic composition of five strawberry cultivars (Fragaria x ananassa Duch.) grown in two different soilless systems.
    Hernanz D; Recamales AF; Meléndez-Martínez AJ; González-Miret ML; Heredia FJ
    J Agric Food Chem; 2007 Mar; 55(5):1846-52. PubMed ID: 17279770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins.
    He Y; Wen L; Yu H; Zheng F; Wang Z; Xu X; Zhang H; Cao Y; Wang B; Chu B; Hao J
    Food Chem; 2018 Dec; 268():15-26. PubMed ID: 30064742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of dietary factors on strawberry anthocyanins oral bioavailability.
    Xiao D; Sandhu A; Huang Y; Park E; Edirisinghe I; Burton-Freeman BM
    Food Funct; 2017 Nov; 8(11):3970-3979. PubMed ID: 28979957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols.
    Fossen T; Rayyan S; Andersen ØM
    Phytochemistry; 2004 May; 65(10):1421-8. PubMed ID: 15231416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.
    Hernández-Herrero JA; Frutos MJ
    Food Chem; 2015 Apr; 173():495-500. PubMed ID: 25466051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.
    Qian BJ; Liu JH; Zhao SJ; Cai JX; Jing P
    Food Chem; 2017 Aug; 228():526-532. PubMed ID: 28317759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.