BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35219257)

  • 1. Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin.
    Karengera A; Sterken MG; Kammenga JE; Riksen JAG; Dinkla IJT; Murk AJ
    Ecotoxicol Environ Saf; 2022 Mar; 233():113344. PubMed ID: 35219257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a transcription-based bioanalytical tool to quantify the toxic potencies of hydrophilic compounds in water using the nematode Caenorhabditis elegans.
    Karengera A; Bao C; Riksen JAG; van Veelen HPJ; Sterken MG; Kammenga JE; Murk AJ; Dinkla IJT
    Ecotoxicol Environ Saf; 2021 Dec; 227():112923. PubMed ID: 34700171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo.
    Leung MC; Goldstone JV; Boyd WA; Freedman JH; Meyer JN
    Toxicol Sci; 2010 Dec; 118(2):444-53. PubMed ID: 20864627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits.
    de Waard WJ; Aarts JM; Peijnenburg AA; Baykus H; Talsma E; Punt A; de Kok TM; van Schooten FJ; Hoogenboom LA
    Toxicol In Vitro; 2008 Mar; 22(2):396-410. PubMed ID: 18061397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benzo[a]pyrene and Caenorhabditis elegans: defining the genotoxic potential in an organism lacking the classical CYP1A1 pathway.
    Abbass M; Chen Y; Arlt VM; Stürzenbaum SR
    Arch Toxicol; 2021 Mar; 95(3):1055-1069. PubMed ID: 33420596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans.
    Aarnio V; Heikkinen L; Peltonen J; Goldsteins G; Lakso M; Wong G
    Comp Biochem Physiol Part D Genomics Proteomics; 2014 Mar; 9():40-8. PubMed ID: 24463456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.
    Vorrink SU; Severson PL; Kulak MV; Futscher BW; Domann FE
    Toxicol Appl Pharmacol; 2014 Feb; 274(3):408-16. PubMed ID: 24355420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo.
    Henry EC; Bemis JC; Henry O; Kende AS; Gasiewicz TA
    Arch Biochem Biophys; 2006 Jun; 450(1):67-77. PubMed ID: 16545771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.
    Henry EC; Welle SL; Gasiewicz TA
    Toxicol Sci; 2010 Mar; 114(1):90-100. PubMed ID: 19933214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog Xenopus Laevis: Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type.
    Freeburg SH; Engelbrecht E; Powell WH
    Toxicol Sci; 2017 Feb; 155(2):337-347. PubMed ID: 27994169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCDD dysregulation of 13 AHR-target genes in rat liver.
    Watson JD; Prokopec SD; Smith AB; Okey AB; Pohjanvirta R; Boutros PC
    Toxicol Appl Pharmacol; 2014 Feb; 274(3):445-54. PubMed ID: 24355419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCDD Toxicity Mediated by Epigenetic Mechanisms.
    Patrizi B; Siciliani de Cumis M
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30567322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands.
    Hrubá E; Vondráček J; Líbalová H; Topinka J; Bryja V; Souček K; Machala M
    Toxicol Lett; 2011 Oct; 206(2):178-88. PubMed ID: 21802500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major).
    Bak SM; Iida M; Soshilov AA; Denison MS; Iwata H; Kim EY
    Arch Toxicol; 2017 Jan; 91(1):301-312. PubMed ID: 27188387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1) and CYP1 family monooxygenase mRNAs and their activity in chicken ovarian follicles following in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
    Antos PA; Błachuta M; Hrabia A; Grzegorzewska AK; Sechman A
    Toxicol Lett; 2015 Sep; 237(2):100-11. PubMed ID: 26043675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding.
    Butler RA; Kelley ML; Powell WH; Hahn ME; Van Beneden RJ
    Gene; 2001 Oct; 278(1-2):223-34. PubMed ID: 11707340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses.
    Lim SYM; Alshagga M; Kong C; Alshawsh MA; Alshehade SA; Pan Y
    Arch Toxicol; 2022 Dec; 96(12):3163-3174. PubMed ID: 36175686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of a chloracne phenotype in an epidermal equivalent model by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on aryl hydrocarbon receptor activation and is not reproduced by aryl hydrocarbon receptor knock down.
    Forrester AR; Elias MS; Woodward EL; Graham M; Williams FM; Reynolds NJ
    J Dermatol Sci; 2014 Jan; 73(1):10-22. PubMed ID: 24161567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pleiotropy of dioxin toxicity--xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles.
    Furness SG; Whelan F
    Pharmacol Ther; 2009 Dec; 124(3):336-53. PubMed ID: 19781569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of TCDD and natural Ah receptor agonists on benzo[a]pyrene-DNA adduct formation in the Caco-2 human colon cell line.
    de Waard PW; de Kok TM; Maas LM; Peijnenburg AA; Hoogenboom RL; Aarts JM; van Schooten FJ
    Mutagenesis; 2008 Jan; 23(1):67-73. PubMed ID: 18065724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.