These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35219270)
41. One-step synthesis of N, S-doped carbon dots with orange emission and their application in tetracycline antibiotics, quercetin sensing, and cell imaging. Cheng S; Zhang J; Liu Y; Wang Y; Xiao Y; Zhang Y Mikrochim Acta; 2021 Sep; 188(10):325. PubMed ID: 34490491 [TBL] [Abstract][Full Text] [Related]
42. Determination of Fe(Ⅲ) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles. Ye HL; Shang Y; Wang HY; Ma YL; He XW; Li WY; Li YH; Zhang YK Talanta; 2021 Aug; 230():122294. PubMed ID: 33934766 [TBL] [Abstract][Full Text] [Related]
43. Nitrogen-terminated silicon nanoparticles obtained via chemical etching and passivation are specific fluorescent probes for creatinine. Meng L; Lan C; Liu Z; Yin JH; Xu N Mikrochim Acta; 2019 May; 186(6):387. PubMed ID: 31144038 [TBL] [Abstract][Full Text] [Related]
44. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Zhang X; Chen X; Kai S; Wang HY; Yang J; Wu FG; Chen Z Anal Chem; 2015 Mar; 87(6):3360-5. PubMed ID: 25671464 [TBL] [Abstract][Full Text] [Related]
45. β-Glucuronidase-triggered reaction for fluorometric and colorimetric dual-mode assay based on the in situ formation of silicon nanoparticles. Li Y; Liu W; Jiang X; Liu H; Wang S; Mao X; Bai R; Wen Y; Luo X; Zhang G; Zhao Y Anal Chim Acta; 2024 May; 1301():342471. PubMed ID: 38553126 [TBL] [Abstract][Full Text] [Related]
46. One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution. Han Y; Chen Y; Feng J; Liu J; Ma S; Chen X Anal Chem; 2017 Mar; 89(5):3001-3008. PubMed ID: 28192949 [TBL] [Abstract][Full Text] [Related]
47. A Dual Emission Fluorescence Probe Based on Silicon Nanoparticles and Rhodamine B for Ratiometric Detection of Kaempferol. Pan C; Lu M; Ma L; Wu M J Fluoresc; 2024 Aug; ():. PubMed ID: 39186138 [TBL] [Abstract][Full Text] [Related]
48. "Switch-Off-On" Detection of Fe Ye H; Zhao L; Ren X; Cai Y; Chi H Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055232 [TBL] [Abstract][Full Text] [Related]
49. Silicon Nanoparticle-Based Ratiometric Fluorescence Probes for Highly Sensitive and Visual Detection of VB Lu M; Pan C; Qin X; Wu M ACS Omega; 2023 Apr; 8(16):14499-14508. PubMed ID: 37125092 [TBL] [Abstract][Full Text] [Related]
50. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Liu L; Zhu G; Zeng W; Yi Y; Lv B; Qian J; Zhang D Mikrochim Acta; 2019 Jan; 186(2):98. PubMed ID: 30631943 [TBL] [Abstract][Full Text] [Related]
51. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for detection of fluoride ions based on 1,8-naphthalimide derivatives. Kai Y; Hu Y; Wang K; Zhi W; Liang M; Yang W Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():239-43. PubMed ID: 24051296 [TBL] [Abstract][Full Text] [Related]
52. A dual-mode nanoprobe based on silicon nanoparticles and Fe(II)-phenanthroline for the colorimetric and fluorescence determination of nitrite. Yang C; Xu G; Hou C; Peng L; Wang W; Zhang H; Zhang X Mikrochim Acta; 2023 Jul; 190(8):318. PubMed ID: 37490216 [TBL] [Abstract][Full Text] [Related]
53. Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. Wu S; Zhong Y; Zhou Y; Song B; Chu B; Ji X; Wu Y; Su Y; He Y J Am Chem Soc; 2015 Nov; 137(46):14726-32. PubMed ID: 26510478 [TBL] [Abstract][Full Text] [Related]
54. Silicon nanoparticles as a fluorometric probe for sensitive detection of cyanide ion and its application in C. elegans bio-imaging. Alagarasan JK; Shasikala S; Ganesan S; Arunachalam M; Manojkumar U; Palaninaicker S; Nguyen DD; Chang SW; Lee M; Lo HM Environ Res; 2023 May; 224():115402. PubMed ID: 36764433 [TBL] [Abstract][Full Text] [Related]
55. One-Pot Microwave Synthesis of Water-Dispersible, High Fluorescence Silicon Nanoparticles and Their Imaging Applications in Vitro and in Vivo. Ye HL; Cai SJ; Li S; He XW; Li WY; Li YH; Zhang YK Anal Chem; 2016 Dec; 88(23):11631-11638. PubMed ID: 27797177 [TBL] [Abstract][Full Text] [Related]
56. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Wang K; He X; Yang X; Shi H Acc Chem Res; 2013 Jul; 46(7):1367-76. PubMed ID: 23489227 [TBL] [Abstract][Full Text] [Related]
57. A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu Yang Y; Li L; Lin L; Wang X; Li J; Liu H; Liu X; Huo D; Hou C Anal Bioanal Chem; 2022 Mar; 414(8):2619-2628. PubMed ID: 35084508 [TBL] [Abstract][Full Text] [Related]
58. Synthesis and characterization of ZnS:Mn/ZnS core/shell nanoparticles for tumor targeting and imaging in vivo. Yu Z; Ma X; Yu B; Pan Y; Liu Z J Biomater Appl; 2013 Aug; 28(2):232-40. PubMed ID: 22532407 [TBL] [Abstract][Full Text] [Related]
59. A dual-signal fluorometric-colorimetric sensing platform and visual detection with a smartphone for the determination of β-galactosidase activity based on fluorescence silicon nanoparticles. Liu J; Li Z; Zhang J; Wang G; Su X Talanta; 2022 Apr; 240():123165. PubMed ID: 34953382 [TBL] [Abstract][Full Text] [Related]
60. Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. Na M; Zhang S; Liu J; Ma S; Han Y; Wang Y; He Y; Chen H; Chen X J Hazard Mater; 2020 Mar; 386():121956. PubMed ID: 31884372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]