These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 35219654)
1. OMI formaldehyde column constrained emissions of reactive volatile organic compounds over the Pearl River Delta region of China. Li J; Zhang M; Tao J; Han X; Xu Y Sci Total Environ; 2022 Jun; 826():154121. PubMed ID: 35219654 [TBL] [Abstract][Full Text] [Related]
2. A study of the trace gas columns of O3, NO2 and HCHO over Africa in September 1997. Meyer-Arnek J; Ladstätter-Weissenmayer A; Richter A; Wittrock F; Burrows JP Faraday Discuss; 2005; 130():387-405; discussion 491-517, 519-24. PubMed ID: 16161794 [TBL] [Abstract][Full Text] [Related]
3. Impact of formaldehyde on ozone formation in Central China: Important role of biogenic emission in forest region. Dai W; Wang R; Zhong H; Li L; Zhang Y; Li J; Wang Q; Cao J; Ho SSH; Zhang T; Zhou J; Liu S; Li G; Tie X Sci Total Environ; 2024 Nov; 949():175182. PubMed ID: 39089373 [TBL] [Abstract][Full Text] [Related]
4. Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. Zhang C; Li J; Zhao W; Yao Q; Wang H; Wang B Sci Total Environ; 2022 Sep; 838(Pt 1):155904. PubMed ID: 35569659 [TBL] [Abstract][Full Text] [Related]
5. Sources of formaldehyde and their contributions to photochemical O Ling ZH; Zhao J; Fan SJ; Wang XM Chemosphere; 2017 Feb; 168():1293-1301. PubMed ID: 27919530 [TBL] [Abstract][Full Text] [Related]
6. Reconciling the bottom-up methodology and ground measurement constraints to improve the city-scale NMVOCs emission inventory: A case study of Nanjing, China. Wu R; Zhao Y; Xia S; Hu W; Xie F; Zhang Y; Sun J; Yu H; An J; Wang Y Sci Total Environ; 2022 Mar; 812():152447. PubMed ID: 34942246 [TBL] [Abstract][Full Text] [Related]
7. Modeling study of ozone source apportionment over the Pearl River Delta in 2015. Yang W; Chen H; Wang W; Wu J; Li J; Wang Z; Zheng J; Chen D Environ Pollut; 2019 Oct; 253():393-402. PubMed ID: 31325884 [TBL] [Abstract][Full Text] [Related]
8. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Ou J; Zheng J; Li R; Huang X; Zhong Z; Zhong L; Lin H Sci Total Environ; 2015 Oct; 530-531():393-402. PubMed ID: 26057544 [TBL] [Abstract][Full Text] [Related]
9. Identification of ozone sensitivity for NO Xue J; Zhao T; Luo Y; Miao C; Su P; Liu F; Zhang G; Qin S; Song Y; Bu N; Xing C Environ Int; 2022 Feb; 160():107048. PubMed ID: 34959197 [TBL] [Abstract][Full Text] [Related]
10. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul. Im U; Poupkou A; Incecik S; Markakis K; Kindap T; Unal A; Melas D; Yenigun O; Topcu S; Odman MT; Tayanc M; Guler M Sci Total Environ; 2011 Mar; 409(7):1255-65. PubMed ID: 21257192 [TBL] [Abstract][Full Text] [Related]
11. VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China. Hu Y; Shi B; Yuan X; Zheng C; Sha Q; Yu Y; Huang Z; Zheng J J Environ Sci (China); 2023 Jan; 123():430-445. PubMed ID: 36522004 [TBL] [Abstract][Full Text] [Related]
12. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
13. Characterization of VOC emissions from construction machinery and river ships in the Pearl River Delta of China. Wang R; Yuan Z; Zheng J; Li C; Huang Z; Li W; Xie Y; Wang Y; Yu K; Duan L J Environ Sci (China); 2020 Oct; 96():138-150. PubMed ID: 32819688 [TBL] [Abstract][Full Text] [Related]
14. Contributions of local emissions and regional background to summertime ozone in central China. Su F; Xu Q; Yin S; Wang K; Liu G; Wang P; Kang M; Zhang R; Ying Q J Environ Manage; 2023 Jul; 338():117778. PubMed ID: 37019021 [TBL] [Abstract][Full Text] [Related]
15. Changing ozone sensitivity in Fujian Province, China, during 2012-2021: Importance of controlling VOC emissions. Chen N; Yang Y; Wang D; You J; Gao Y; Zhang L; Zeng Z; Hu B Environ Pollut; 2024 Oct; 359():124757. PubMed ID: 39153537 [TBL] [Abstract][Full Text] [Related]
16. Worsening ozone air pollution with reduced NO Zhao M; Zhang Y; Pei C; Chen T; Mu J; Liu Y; Wang Y; Wang W; Xue L J Environ Manage; 2022 Dec; 324():116327. PubMed ID: 36183531 [TBL] [Abstract][Full Text] [Related]
17. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
18. Spatial and temporal analysis of HCHO response to drought in South Korea. Wasti S; Wang Y Sci Total Environ; 2022 Dec; 852():158451. PubMed ID: 36063934 [TBL] [Abstract][Full Text] [Related]
19. Unraveling the influence of biogenic volatile organic compounds and their constituents on ozone and SOA formation within the Yellow River Basin, China. Yong J; Xie Y; Guo H; Li Y; Sun S Chemosphere; 2024 Apr; 353():141549. PubMed ID: 38408570 [TBL] [Abstract][Full Text] [Related]
20. Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NO Jung J; Choi Y; Mousavinezhad S; Kang D; Park J; Pouyaei A; Ghahremanloo M; Momeni M; Kim H Atmos Res; 2022 Jun; 270():1-14. PubMed ID: 35370333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]