These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 35219861)
21. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model. Pu Y; Li J; Tang J; Guo F IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2760-2769. PubMed ID: 34379594 [TBL] [Abstract][Full Text] [Related]
22. A Convolutional Neural Network System to Discriminate Drug-Target Interactions. Hu S; Xia D; Su B; Chen P; Wang B; Li J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1315-1324. PubMed ID: 31514149 [TBL] [Abstract][Full Text] [Related]
23. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. Jarada TN; Rokne JG; Alhajj R BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713 [TBL] [Abstract][Full Text] [Related]
26. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Lin S; Wang Y; Zhang L; Chu Y; Liu Y; Fang Y; Jiang M; Wang Q; Zhao B; Xiong Y; Wei DQ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34671814 [TBL] [Abstract][Full Text] [Related]
27. PPDTS: Predicting potential drug-target interactions based on network similarity. Wang W; Wang Y; Zhang Y; Liu D; Zhang H; Wang X IET Syst Biol; 2022 Feb; 16(1):18-27. PubMed ID: 34783172 [TBL] [Abstract][Full Text] [Related]
28. Identifying drug-target interactions based on graph convolutional network and deep neural network. Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110 [TBL] [Abstract][Full Text] [Related]
29. MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework. Chen S; Li M; Semenov I Methods; 2024 Apr; 224():79-92. PubMed ID: 38430967 [TBL] [Abstract][Full Text] [Related]
30. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery. Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838 [TBL] [Abstract][Full Text] [Related]
31. Potential SARS-CoV-2 nonstructural proteins inhibitors: drugs repurposing with drug-target networks and deep learning. Azmoodeh SK; Tsigelny IF; Kouznetsova VL Front Biosci (Landmark Ed); 2022 Apr; 27(4):113. PubMed ID: 35468672 [TBL] [Abstract][Full Text] [Related]
32. Predicting drug-protein interactions by preserving the graph information of multi source data. Wei J; Lu L; Shen T BMC Bioinformatics; 2024 Jan; 25(1):10. PubMed ID: 38177981 [TBL] [Abstract][Full Text] [Related]
33. MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction. Wang S; Song X; Zhang Y; Zhang K; Liu Y; Ren C; Pang S Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176031 [TBL] [Abstract][Full Text] [Related]
34. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions. Jung YS; Kim Y; Cho YR Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033 [TBL] [Abstract][Full Text] [Related]
35. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction. Zhang R; Wang Z; Wang X; Meng Z; Cui W Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892155 [TBL] [Abstract][Full Text] [Related]
36. GIFDTI: Prediction of Drug-Target Interactions Based on Global Molecular and Intermolecular Interaction Representation Learning. Zhao Q; Duan G; Zhao H; Zheng K; Li Y; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1943-1952. PubMed ID: 36445997 [TBL] [Abstract][Full Text] [Related]
37. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. Li J; Wang J; Lv H; Zhang Z; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592 [TBL] [Abstract][Full Text] [Related]
38. Prediction of drug-target interactions via neural tangent kernel extraction feature matrix factorization model. Wang Y; Zhang Y; Wang J; Xie F; Zheng D; Zou X; Guo M; Ding Y; Wan J; Han K Comput Biol Med; 2023 Jun; 159():106955. PubMed ID: 37094465 [TBL] [Abstract][Full Text] [Related]
39. Integrative approach for predicting drug-target interactions via matrix factorization and broad learning systems. Xu W; Yang X; Guan Y; Cheng X; Wang Y Math Biosci Eng; 2024 Jan; 21(2):2608-2625. PubMed ID: 38454698 [TBL] [Abstract][Full Text] [Related]
40. Multiview network embedding for drug-target Interactions prediction by consistent and complementary information preserving. Shang Y; Ye X; Futamura Y; Yu L; Sakurai T Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35262678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]