BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35219918)

  • 1. Phase separation ability and phosphatase activity of the SHP1-R360E mutant.
    Zhang Q; Kong W; Zhu T; Zhu G; Zhu J; Kong X; Du Y
    Biochem Biophys Res Commun; 2022 Apr; 600():150-155. PubMed ID: 35219918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tyrosine phosphatases Shp1 and Shp2 have unique and opposing roles in oligodendrocyte development.
    Kuo E; Park DK; Tzvetanova ID; Leiton CV; Cho BS; Colognato H
    J Neurochem; 2010 Apr; 113(1):200-12. PubMed ID: 20132481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Themis-associated phosphatase activity controls signaling in T cell development.
    Mehta M; Brzostek J; Chen EW; Tung DWH; Chen S; Sankaran S; Yap J; Rybakin V; Gascoigne NRJ
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11331-E11340. PubMed ID: 30413615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SHP1 and SHP2 inhibition enhances the pro-differentiative effect of phorbol esters: an alternative approach against acute myeloid leukemia.
    Pérez-Fernández A; López-Ruano G; Prieto-Bermejo R; Ijurko C; Díez-Campelo M; Sánchez-Guijo F; Hernández-Hernández Á
    J Exp Clin Cancer Res; 2019 Feb; 38(1):80. PubMed ID: 30764849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2.
    Xu X; Hou B; Fulzele A; Masubuchi T; Zhao Y; Wu Z; Hu Y; Jiang Y; Ma Y; Wang H; Bennett EJ; Fu G; Hui E
    J Cell Biol; 2020 Jun; 219(6):. PubMed ID: 32437509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Megakaryocyte-specific deletion of the protein-tyrosine phosphatases Shp1 and Shp2 causes abnormal megakaryocyte development, platelet production, and function.
    Mazharian A; Mori J; Wang YJ; Heising S; Neel BG; Watson SP; Senis YA
    Blood; 2013 May; 121(20):4205-20. PubMed ID: 23509158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2.
    Taylor J; Bulek A; Gannon I; Robson M; Kokalaki E; Grothier T; McKenzie C; El-Kholy M; Stavrou M; Traynor-White C; Lim WC; Panagiotou P; Srivastava S; Baldan V; Sillibourne J; Ferrari M; Pule M; Thomas S
    Front Immunol; 2023; 14():1119350. PubMed ID: 37334382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions.
    Hegazy SA; Wang P; Anand M; Ingham RJ; Gelebart P; Lai R
    J Biol Chem; 2010 Jun; 285(26):19813-20. PubMed ID: 20424160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors.
    Xu X; Masubuchi T; Cai Q; Zhao Y; Hui E
    Elife; 2021 Nov; 10():. PubMed ID: 34734802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis.
    Geer MJ; van Geffen JP; Gopalasingam P; Vögtle T; Smith CW; Heising S; Kuijpers MJE; Tullemans BME; Jarvis GE; Eble JA; Jeeves M; Overduin M; Heemskerk JWM; Mazharian A; Senis YA
    Blood; 2018 Sep; 132(13):1413-1425. PubMed ID: 29891536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase.
    Oriente F; Iovino S; Cabaro S; Cassese A; Longobardi E; Miele C; Ungaro P; Formisano P; Blasi F; Beguinot F
    Diabetes; 2011 Jan; 60(1):138-47. PubMed ID: 20864515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphatase Shp1 interacts with and dephosphorylates cortactin to inhibit invadopodia function.
    Varone A; Amoruso C; Monti M; Patheja M; Greco A; Auletta L; Zannetti A; Corda D
    Cell Commun Signal; 2021 Jun; 19(1):64. PubMed ID: 34088320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation.
    Kim DJ; Tremblay ML; Digiovanni J
    PLoS One; 2010 Apr; 5(4):e10290. PubMed ID: 20421975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of autoimmune arthritis by the SHP-1 tyrosine phosphatase.
    Markovics A; Toth DM; Glant TT; Mikecz K
    Arthritis Res Ther; 2020 Jun; 22(1):160. PubMed ID: 32586377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation of SHP2E76K promotes malignant transformation of mesenchymal stem cells by activating mitochondrial complexes.
    Kan C; Tan Z; Liu L; Liu B; Zhan L; Zhu J; Li X; Lin K; Liu J; Liu Y; Yang F; Wong M; Wang S; Zheng H
    JCI Insight; 2024 Mar; 9(8):. PubMed ID: 38451719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shp1 function in myeloid cells.
    Abram CL; Lowell CA
    J Leukoc Biol; 2017 Sep; 102(3):657-675. PubMed ID: 28606940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SHP1 and SHP2 protein-tyrosine phosphatases associate with betac after interleukin-3-induced receptor tyrosine phosphorylation. Identification of potential binding sites and substrates.
    Bone H; Dechert U; Jirik F; Schrader JW; Welham MJ
    J Biol Chem; 1997 May; 272(22):14470-6. PubMed ID: 9162089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of SHP1/NMDA receptor signaling in spinal cord dorsal horn alleviated inflammatory pain.
    Yang L; Bai HH; Zhang ZY; Liu JP; Suo ZW; Yang X; Hu XD
    Neuropharmacology; 2018 Jul; 137():104-113. PubMed ID: 29758384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk.
    Ganju RK; Brubaker SA; Chernock RD; Avraham S; Groopman JE
    J Biol Chem; 2000 Jun; 275(23):17263-8. PubMed ID: 10747947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation.
    Zhu G; Xie J; Kong W; Xie J; Li Y; Du L; Zheng Q; Sun L; Guan M; Li H; Zhu T; He H; Liu Z; Xia X; Kan C; Tao Y; Shen HC; Li D; Wang S; Yu Y; Yu ZH; Zhang ZY; Liu C; Zhu J
    Cell; 2020 Oct; 183(2):490-502.e18. PubMed ID: 33002410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.