BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35219939)

  • 21. Contrastive Learning for Mitochondria Segmentation.
    Li Z; Chen X; Zhao J; Xiong Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3496-3500. PubMed ID: 34891993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unravelling the effect of data augmentation transformations in polyp segmentation.
    Sánchez-Peralta LF; Picón A; Sánchez-Margallo FM; Pagador JB
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):1975-1988. PubMed ID: 32989680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Weakly supervised mitosis detection in breast histopathology images using concentric loss.
    Li C; Wang X; Liu W; Latecki LJ; Wang B; Huang J
    Med Image Anal; 2019 Apr; 53():165-178. PubMed ID: 30798116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic detection of small bowel tumors in wireless capsule endoscopy images using ensemble learning.
    Vieira PM; Freitas NR; Valente J; Vaz IF; Rolanda C; Lima CS
    Med Phys; 2020 Jan; 47(1):52-63. PubMed ID: 31299096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual meta-learning framework based on idle data for enhancing segmentation of pancreatic cancer.
    Li J; Qi L; Chen Q; Zhang YD; Qian X
    Med Image Anal; 2022 May; 78():102342. PubMed ID: 35354108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning COVID-19 Pneumonia Lesion Segmentation From Imperfect Annotations via Divergence-Aware Selective Training.
    Yang S; Wang G; Sun H; Luo X; Sun P; Li K; Wang Q; Zhang S
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3673-3684. PubMed ID: 35522641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning for registration of region of interest in consecutive wireless capsule endoscopy frames.
    Liao C; Wang C; Bai J; Lan L; Wu X
    Comput Methods Programs Biomed; 2021 Sep; 208():106189. PubMed ID: 34102560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings.
    Karmakar R; Nooshabadi S
    J Imaging; 2022 Jun; 8(6):. PubMed ID: 35735968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced segmentation of gastrointestinal polyps from capsule endoscopy images with artifacts using ensemble learning.
    Zhou JX; Yang Z; Xi DH; Dai SJ; Feng ZQ; Li JY; Xu W; Wang H
    World J Gastroenterol; 2022 Nov; 28(41):5931-5943. PubMed ID: 36405108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DBE-Net: Dual Boundary-Guided Attention Exploration Network for Polyp Segmentation.
    Ma H; Xu C; Nie C; Han J; Li Y; Liu C
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-Branch Network With Dual-Sampling Modulated Dice Loss for Hard Exudate Segmentation in Color Fundus Images.
    Liu Q; Liu H; Zhao Y; Liang Y
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1091-1102. PubMed ID: 34460407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.
    Karimi D; Samei G; Kesch C; Nir G; Salcudean SE
    Int J Comput Assist Radiol Surg; 2018 Aug; 13(8):1211-1219. PubMed ID: 29766373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MCE-Net: polyp segmentation with multiple branch series-parallel attention and channel interaction via edge distribution guidance.
    Li H; Yang L; Miao J; Yu P; Ge F
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37253377
    [No Abstract]   [Full Text] [Related]  

  • 35. Computer aided wireless capsule endoscopy video segmentation.
    Li B; Xu G; Zhou R; Wang T
    Med Phys; 2015 Feb; 42(2):645-52. PubMed ID: 25771558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Segmentation of HE-stained meningioma pathological images based on pseudo-labels.
    Wu C; Zhong J; Lin L; Chen Y; Xue Y; Shi P
    PLoS One; 2022; 17(2):e0263006. PubMed ID: 35120175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conventional-to-spectral CT image translation augmentation workflow for robust contrast injection-independent organ segmentation.
    Lartaud PJ; Dupont C; Hallé D; Schleef A; Dessouky R; Vlachomitrou AS; Rouet JM; Nempont O; Boussel L
    Med Phys; 2022 Feb; 49(2):1108-1122. PubMed ID: 34689353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Class-wise confidence-aware active learning for laparoscopic images segmentation.
    Qiu J; Hayashi Y; Oda M; Kitasaka T; Mori K
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):473-482. PubMed ID: 36271215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.