These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 35219940)
1. DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation. Dong S; Pan Z; Fu Y; Yang Q; Gao Y; Yu T; Shi Y; Zhuo C Med Image Anal; 2022 May; 78():102389. PubMed ID: 35219940 [TBL] [Abstract][Full Text] [Related]
2. SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Sun X; Garg P; Plein S; van der Geest RJ Med Phys; 2021 Apr; 48(4):1750-1763. PubMed ID: 33544895 [TBL] [Abstract][Full Text] [Related]
3. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images. Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627 [TBL] [Abstract][Full Text] [Related]
4. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension. Yan W; Wang Y; van der Geest RJ; Tao Q Comput Biol Med; 2019 Aug; 111():103356. PubMed ID: 31323604 [TBL] [Abstract][Full Text] [Related]
5. A distance map regularized CNN for cardiac cine MR image segmentation. Dangi S; Linte CA; Yaniv Z Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971 [TBL] [Abstract][Full Text] [Related]
6. Automatic cardiac cine MRI segmentation and heart disease classification. Ammar A; Bouattane O; Youssfi M Comput Med Imaging Graph; 2021 Mar; 88():101864. PubMed ID: 33485057 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
8. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
9. Multiscale attention guided U-Net architecture for cardiac segmentation in short-axis MRI images. Cui H; Yuwen C; Jiang L; Xia Y; Zhang Y Comput Methods Programs Biomed; 2021 Jul; 206():106142. PubMed ID: 34004500 [TBL] [Abstract][Full Text] [Related]
10. STADNet: Spatial-Temporal Attention-Guided Dual-Path Network for cardiac cine MRI super-resolution. Lyu J; Wang S; Tian Y; Zou J; Dong S; Wang C; Aviles-Rivero AI; Qin J Med Image Anal; 2024 May; 94():103142. PubMed ID: 38492252 [TBL] [Abstract][Full Text] [Related]
11. A Domain-Shift Invariant CNN Framework for Cardiac MRI Segmentation Across Unseen Domains. Patil SS; Ramteke M; Verma M; Seth S; Bhargava R; Mittal S; Rathore AS J Digit Imaging; 2023 Oct; 36(5):2148-2163. PubMed ID: 37430062 [TBL] [Abstract][Full Text] [Related]
12. A bidirectional registration neural network for cardiac motion tracking using cine MRI images. Lu J; Jin R; Wang M; Song E; Ma G Comput Biol Med; 2023 Jun; 160():107001. PubMed ID: 37187138 [TBL] [Abstract][Full Text] [Related]
13. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance. Furuhashi N; Okuhata S; Kobayashi T Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928 [TBL] [Abstract][Full Text] [Related]
14. RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images. Li YZ; Wang Y; Huang YH; Xiang P; Liu WX; Lai QQ; Gao YY; Xu MS; Guo YF Comput Methods Programs Biomed; 2023 Apr; 231():107437. PubMed ID: 36863157 [TBL] [Abstract][Full Text] [Related]
15. 3D asymmetric expectation-maximization attention network for brain tumor segmentation. Zhang J; Jiang Z; Liu D; Sun Q; Hou Y; Liu B NMR Biomed; 2022 May; 35(5):e4657. PubMed ID: 34859922 [TBL] [Abstract][Full Text] [Related]
16. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
17. Automatic right ventricular segmentation for cine cardiac magnetic resonance images based on a new deep atlas network. Wang L; Su H; Liu P Med Phys; 2023 Nov; 50(11):7060-7070. PubMed ID: 37293874 [TBL] [Abstract][Full Text] [Related]
18. Cardiac MR segmentation based on sequence propagation by deep learning. Luo C; Shi C; Li X; Gao D PLoS One; 2020; 15(4):e0230415. PubMed ID: 32271777 [TBL] [Abstract][Full Text] [Related]
19. Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks. Vesal S; Maier A; Ravikumar N J Imaging; 2020 Jul; 6(7):. PubMed ID: 34460658 [TBL] [Abstract][Full Text] [Related]
20. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images. Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]