BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 35220463)

  • 1. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development.
    Liao J; Huang Y; Wang Q; Chen S; Zhang C; Wang D; Lv Z; Zhang X; Wu M; Chen G
    Cell Mol Life Sci; 2022 Feb; 79(3):158. PubMed ID: 35220463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development.
    Li J; Cui Y; Xu J; Wang Q; Yang X; Li Y; Zhang X; Qiu M; Zhang Z; Zhang Z
    J Biol Chem; 2017 Sep; 292(38):15814-15825. PubMed ID: 28794157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm.
    Xu Y; Malladi P; Zhou D; Longaker MT
    Plast Reconstr Surg; 2007 Dec; 120(7):1783-1795. PubMed ID: 18090740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.
    Li S; Meyer NP; Quarto N; Longaker MT
    PLoS One; 2013; 8(3):e58610. PubMed ID: 23536803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone.
    Li S; Quarto N; Longaker MT
    PLoS One; 2010 Nov; 5(11):e14033. PubMed ID: 21124973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development.
    Sasaki T; Ito Y; Bringas P; Chou S; Urata MM; Slavkin H; Chai Y
    Development; 2006 Jan; 133(2):371-81. PubMed ID: 16368934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of cranial neural crest cells to mouse skull development.
    Wu T; Chen G; Tian F; Liu HX
    Int J Dev Biol; 2017; 61(8-9):495-503. PubMed ID: 29139535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones.
    Quarto N; Wan DC; Kwan MD; Panetta NJ; Li S; Longaker MT
    J Bone Miner Res; 2010 Jul; 25(7):1680-94. PubMed ID: 19929441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Chai Y
    J Biol Chem; 2013 Oct; 288(41):29760-70. PubMed ID: 23950180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone.
    Li S; Quarto N; Senarath-Yapa K; Grey N; Bai X; Longaker MT
    PLoS One; 2015; 10(10):e0138059. PubMed ID: 26431534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A non-canonical JAGGED1 signal to JAK2 mediates osteoblast commitment in cranial neural crest cells.
    Kamalakar A; Oh MS; Stephenson YC; Ballestas-Naissir SA; Davis ME; Willett NJ; Drissi HM; Goudy SL
    Cell Signal; 2019 Feb; 54():130-138. PubMed ID: 30529759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAGGED1 stimulates cranial neural crest cell osteoblast commitment pathways and bone regeneration independent of canonical NOTCH signaling.
    Kamalakar A; McKinney JM; Salinas Duron D; Amanso AM; Ballestas SA; Drissi H; Willett NJ; Bhattaram P; García AJ; Wood LB; Goudy SL
    Bone; 2021 Feb; 143():115657. PubMed ID: 32980561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-β and BMP signaling in osteoblast differentiation and bone formation.
    Chen G; Deng C; Li YP
    Int J Biol Sci; 2012; 8(2):272-88. PubMed ID: 22298955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological Signatures of Dual Embryonic Origins in Mouse Skull Vault.
    Hu B; Wu T; Zhao Y; Xu G; Shen R; Chen G
    Cell Physiol Biochem; 2017; 43(6):2525-2534. PubMed ID: 29130970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smad4 is required to regulate the fate of cranial neural crest cells.
    Ko SO; Chung IH; Xu X; Oka S; Zhao H; Cho ES; Deng C; Chai Y
    Dev Biol; 2007 Dec; 312(1):435-47. PubMed ID: 17964566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osterix is required for cranial neural crest-derived craniofacial bone formation.
    Baek WY; Kim YJ; de Crombrugghe B; Kim JE
    Biochem Biophys Res Commun; 2013 Mar; 432(1):188-92. PubMed ID: 23313488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jagged1 is essential for osteoblast development during maxillary ossification.
    Hill CR; Yuasa M; Schoenecker J; Goudy SL
    Bone; 2014 May; 62():10-21. PubMed ID: 24491691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foxc1 integrates Fgf and Bmp signalling independently of twist or noggin during calvarial bone development.
    Rice R; Rice DP; Thesleff I
    Dev Dyn; 2005 Jul; 233(3):847-52. PubMed ID: 15906377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.