These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35220470)

  • 1. Host SPX-PHR regulatory circuit: the molecular dynamo steering mycorrhization in plants.
    Srivastava R; Roychowdhury A; Kumar R
    Plant Cell Rep; 2022 May; 41(5):1329-1332. PubMed ID: 35220470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings.
    Singh NRR; Roychowdhury A; Srivastava R; Akash ; Gaganan GA; Parida AP; Kumar R
    Plant Sci; 2023 Aug; 333():111723. PubMed ID: 37142098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses.
    Shi J; Zhao B; Jin R; Hou L; Zhang X; Dai H; Yu N; Wang E
    New Phytol; 2022 Dec; 236(6):2282-2293. PubMed ID: 36254112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orchestrating plant direct and indirect phosphate uptake pathways.
    Wang P; Limpens E; Yao R
    Trends Plant Sci; 2022 Apr; 27(4):319-321. PubMed ID: 34953721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative Analysis of the Wheat
    Zhang Y; Hu L; Yu D; Xu K; Zhang J; Li X; Wang P; Chen G; Liu Z; Peng C; Li C; Guo T
    Cells; 2019 May; 8(5):. PubMed ID: 31121904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphate starvation response-centered network regulates mycorrhizal symbiosis.
    Shi J; Zhao B; Zheng S; Zhang X; Wang X; Dong W; Xie Q; Wang G; Xiao Y; Chen F; Yu N; Wang E
    Cell; 2021 Oct; 184(22):5527-5540.e18. PubMed ID: 34644527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis.
    Das D; Paries M; Hobecker K; Gigl M; Dawid C; Lam HM; Zhang J; Chen M; Gutjahr C
    Nat Commun; 2022 Jan; 13(1):477. PubMed ID: 35078978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbiotic phosphate transport in arbuscular mycorrhizas.
    Karandashov V; Bucher M
    Trends Plant Sci; 2005 Jan; 10(1):22-9. PubMed ID: 15642520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.
    Burleigh SH; Harrison MJ
    Plant Mol Biol; 1997 May; 34(2):199-208. PubMed ID: 9207836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.
    Javot H; Pumplin N; Harrison MJ
    Plant Cell Environ; 2007 Mar; 30(3):310-322. PubMed ID: 17263776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi.
    Jiang Y; Wang W; Xie Q; Liu N; Liu L; Wang D; Zhang X; Yang C; Chen X; Tang D; Wang E
    Science; 2017 Jun; 356(6343):1172-1175. PubMed ID: 28596307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
    Branscheid A; Sieh D; Pant BD; May P; Devers EA; Elkrog A; Schauser L; Scheible WR; Krajinski F
    Mol Plant Microbe Interact; 2010 Jul; 23(7):915-26. PubMed ID: 20521954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?
    Gu M; Chen A; Dai X; Liu W; Xu G
    Plant Signal Behav; 2011 Sep; 6(9):1300-4. PubMed ID: 22019636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability.
    Volpe V; Dell'Aglio E; Bonfante P
    Plant Signal Behav; 2013 Mar; 8(3):e23414. PubMed ID: 23333966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.
    Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN
    New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y
    PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula.
    Sieh D; Watanabe M; Devers EA; Brueckner F; Hoefgen R; Krajinski F
    New Phytol; 2013 Jan; 197(2):606-616. PubMed ID: 23190168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate Suppression of Arbuscular Mycorrhizal Symbiosis Involves Gibberellic Acid Signaling.
    Nouri E; Surve R; Bapaume L; Stumpe M; Chen M; Zhang Y; Ruyter-Spira C; Bouwmeester H; Glauser G; Bruisson S; Reinhardt D
    Plant Cell Physiol; 2021 Oct; 62(6):959-970. PubMed ID: 34037236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Through the doors of perception to function in arbuscular mycorrhizal symbioses.
    Bucher M; Hause B; Krajinski F; Küster H
    New Phytol; 2014 Dec; 204(4):833-40. PubMed ID: 25414918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.