These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35220520)

  • 1. Metals extraction processes from electronic waste: constraints and opportunities.
    Chakraborty SC; Zaman MWU; Hoque M; Qamruzzaman M; Zaman JU; Hossain D; Pramanik BK; Nguyen LN; Nghiem LD; Mofijur M; Mondal MIH; Sithi JA; Shahriar SMS; Johir MAH; Ahmed MB
    Environ Sci Pollut Res Int; 2022 May; 29(22):32651-32669. PubMed ID: 35220520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends of electronic waste pollution and its impact on the global environment and ecosystem.
    Akram R; Natasha ; Fahad S; Hashmi MZ; Wahid A; Adnan M; Mubeen M; Khan N; Rehmani MIA; Awais M; Abbas M; Shahzad K; Ahmad S; Hammad HM; Nasim W
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):16923-16938. PubMed ID: 31025281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Status of electronic waste recycling techniques: a review.
    Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts of circular economy for sustainable management of electronic wastes: challenges and management options.
    Srivastav AL; Markandeya ; Patel N; Pandey M; Pandey AK; Dubey AK; Kumar A; Bhardwaj AK; Chaudhary VK
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):48654-48675. PubMed ID: 36849690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities.
    Javed A; Singh J
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9886-9919. PubMed ID: 36995505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.
    Akcil A; Erust C; Gahan CS; Ozgun M; Sahin M; Tuncuk A
    Waste Manag; 2015 Nov; 45():258-71. PubMed ID: 25704926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global challenges for e-waste management: the societal implications.
    Magalini F
    Rev Environ Health; 2016 Mar; 31(1):137-40. PubMed ID: 26812759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.
    Calgaro CO; Schlemmer DF; da Silva MD; Maziero EV; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():289-97. PubMed ID: 26022338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inconsistencies of e-waste management in developing nations - Facts and plausible solutions.
    Gollakota ARK; Gautam S; Shu CM
    J Environ Manage; 2020 May; 261():110234. PubMed ID: 32148304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.
    Arends D; Schlummer M; Mäurer A; Markowski J; Wagenknecht U
    Waste Manag Res; 2015 Sep; 33(9):775-84. PubMed ID: 26111535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries.
    Brindhadevi K; Barceló D; Lan Chi NT; Rene ER
    Environ Res; 2023 Jan; 217():114926. PubMed ID: 36435494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on recovery processes of metals from E-waste: A green perspective.
    Dutta D; Rautela R; Gujjala LKS; Kundu D; Sharma P; Tembhare M; Kumar S
    Sci Total Environ; 2023 Feb; 859(Pt 2):160391. PubMed ID: 36423849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioleaching: urban mining option to curb the menace of E-waste challenge.
    Arya S; Kumar S
    Bioengineered; 2020 Jan; 11(1):640-660. PubMed ID: 32538256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallurgical processes unveil the unexplored "sleeping mines" e- waste: a review.
    Thakur P; Kumar S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32359-32370. PubMed ID: 32533494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.