These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35220594)
1. Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy. Li W; Liu YH; Estrada H; Rebling J; Reiss M; Galli S; Nombela-Arrieta C; Razansky D J Bone Miner Res; 2022 May; 37(5):1032-1043. PubMed ID: 35220594 [TBL] [Abstract][Full Text] [Related]
3. Long-Term Imaging of Wound Angiogenesis with Large Scale Optoacoustic Microscopy. Rebling J; Ben-Yehuda Greenwald M; Wietecha M; Werner S; Razansky D Adv Sci (Weinh); 2021 Jul; 8(13):2004226. PubMed ID: 34258153 [TBL] [Abstract][Full Text] [Related]
4. In vivo longitudinal visualization of bone marrow engraftment process in mouse calvaria using two-photon microscopy. Le VH; Lee S; Lee S; Wang T; Hyuk Jang W; Yoon Y; Kwon S; Kim H; Lee SW; Hean Kim K Sci Rep; 2017 Mar; 7():44097. PubMed ID: 28276477 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Zhai Y; Schilling K; Wang T; El Khatib M; Vinogradov S; Brown EB; Zhang X Biomaterials; 2021 Sep; 276():121041. PubMed ID: 34343857 [TBL] [Abstract][Full Text] [Related]
7. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
8. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Holstein JH; Becker SC; Fiedler M; Garcia P; Histing T; Klein M; Laschke MW; Corsten M; Pohlemann T; Menger MD Injury; 2011 Aug; 42(8):765-71. PubMed ID: 21156316 [TBL] [Abstract][Full Text] [Related]
9. Non-invasive longitudinal imaging of VEGF-induced microvascular alterations in skin wounds. Liu YH; Brunner LM; Rebling J; Ben-Yehuda Greenwald M; Werner S; Detmar M; Razansky D Theranostics; 2022; 12(2):558-573. PubMed ID: 34976201 [No Abstract] [Full Text] [Related]
10. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Bai J; Li L; Kou N; Bai Y; Zhang Y; Lu Y; Gao L; Wang F Stem Cell Res Ther; 2021 Aug; 12(1):432. PubMed ID: 34344474 [TBL] [Abstract][Full Text] [Related]
11. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. Zhang L; Wang T; Chang M; Kaiser C; Kim JD; Wu T; Cao X; Zhang X; Schwarz EM J Bone Miner Res; 2017 Sep; 32(9):1870-1883. PubMed ID: 28556967 [TBL] [Abstract][Full Text] [Related]
12. Angiogenesis involvement by octacalcium phosphate-gelatin composite-driven bone regeneration in rat calvaria critical-sized defect. Kurobane T; Shiwaku Y; Anada T; Hamai R; Tsuchiya K; Baba K; Iikubo M; Takahashi T; Suzuki O Acta Biomater; 2019 Apr; 88():514-526. PubMed ID: 30776505 [TBL] [Abstract][Full Text] [Related]
13. High-resolution imaging of the osteogenic and angiogenic interface at the site of murine cranial bone defect repair via multiphoton microscopy. Schilling K; Zhai Y; Zhou Z; Zhou B; Brown E; Zhang X Elife; 2022 Nov; 11():. PubMed ID: 36326085 [TBL] [Abstract][Full Text] [Related]
14. Molecular and Cellular Mechanisms of Delayed Fracture Healing in Mmp10 (Stromelysin 2) Knockout Mice. Valdés-Fernández J; López-Martínez T; Ripalda-Cemboráin P; Calvo IA; Sáez B; Romero-Torrecilla JA; Aldazabal J; Muiños-López E; Montiel V; Orbe J; Rodríguez JA; Páramo JA; Prósper F; Granero-Moltó F J Bone Miner Res; 2021 Nov; 36(11):2203-2213. PubMed ID: 34173256 [TBL] [Abstract][Full Text] [Related]
15. Calvaria bone chamber--a new model for intravital assessment of osseous angiogenesis. Sinikovic B; Schumann P; Winkler M; Kuestermeyer J; Tavassol F; von See C; Carvalho C; Mülhaupt R; Bormann KH; Kokemueller H; Meyer-Lindenberg A; Laschke MW; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2011 Nov; 99(2):151-7. PubMed ID: 21976439 [TBL] [Abstract][Full Text] [Related]
16. Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts. Cohn Yakubovich D; Tawackoli W; Sheyn D; Kallai I; Da X; Pelled G; Gazit D; Gazit Z J Vis Exp; 2015 Dec; (106):e53459. PubMed ID: 26779586 [TBL] [Abstract][Full Text] [Related]
17. The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. Grimes R; Jepsen KJ; Fitch JL; Einhorn TA; Gerstenfeld LC J Bone Miner Res; 2011 Nov; 26(11):2597-609. PubMed ID: 21826735 [TBL] [Abstract][Full Text] [Related]
18. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration. Zhang X Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414 [TBL] [Abstract][Full Text] [Related]
19. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. Qu D; Li J; Li Y; Gao Y; Zuo Y; Hsu Y; Hu J J Biomed Mater Res A; 2011 Mar; 96(3):543-51. PubMed ID: 21254386 [TBL] [Abstract][Full Text] [Related]
20. Intravital Imaging of Bone Marrow Microenvironment in the Mouse Calvaria and Tibia. Shih C; Tan L; Li JLY; Tan Y; Cheng H; Ng LG Methods Mol Biol; 2021; 2308():177-202. PubMed ID: 34057724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]