These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35220925)
1. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. Kehinde IA; Egbeyemi A; Kaur M; Onyenaka C; Adebusuyi T; Olaleye OA J Biomol Struct Dyn; 2023 Apr; 41(7):2992-3001. PubMed ID: 35220925 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory mechanism of Ambroxol and Bromhexine Hydrochlorides as potent blockers of molecular interaction between SARS-CoV-2 spike protein and human angiotensin-converting Enzyme-2. Kehinde IA; Egbejimi A; Kaur M; Onyenaka C; Adebusuyi T; Olaleye OA J Mol Graph Model; 2022 Jul; 114():108201. PubMed ID: 35487151 [TBL] [Abstract][Full Text] [Related]
3. Repurposing drugs and identification of inhibitors of integral proteins (spike protein and main protease) of SARS-CoV-2. Shode FO; Idowu ASK; Uhomoibhi OJ; Sabiu S J Biomol Struct Dyn; 2022 Sep; 40(14):6587-6602. PubMed ID: 33590806 [TBL] [Abstract][Full Text] [Related]
4. Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 - Spike protein interaction Olaleye OA; Kaur M; Onyenaka C; Adebusuyi T Heliyon; 2021 Mar; 7(3):e06426. PubMed ID: 33732940 [TBL] [Abstract][Full Text] [Related]
5. Discovery of Clioquinol and Analogues as Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 Infection, ACE2 and ACE2 - Spike Protein Interaction Olaleye OA; Kaur M; Onyenaka C; Adebusuyi T bioRxiv; 2020 Aug; ():. PubMed ID: 32817951 [TBL] [Abstract][Full Text] [Related]
6. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2. Uhomoibhi JO; Shode FO; Idowu KA; Sabiu S J Mol Graph Model; 2022 Jul; 114():108185. PubMed ID: 35430474 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of defensins as neutralizing agents against the deadly SARS-CoV-2. Deepthi V; Mohanakumar KP; Rajamma U J Biomol Struct Dyn; 2023 Apr; 41(7):2911-2925. PubMed ID: 35189779 [TBL] [Abstract][Full Text] [Related]
8. Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Ahmad S; Waheed Y; Abro A; Abbasi SW; Ismail S J Mol Model; 2021 Jun; 27(7):206. PubMed ID: 34169390 [TBL] [Abstract][Full Text] [Related]
9. Computational studies suggest compounds restoring function of p53 cancer mutants can bind SARS-CoV-2 spike protein. Das T; Mukhopadhyay C J Biomol Struct Dyn; 2023 May; 41(8):3368-3381. PubMed ID: 35333136 [TBL] [Abstract][Full Text] [Related]
10. Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. Patel A; Rajendran M; Shah A; Patel H; Pakala SB; Karyala P J Biomol Struct Dyn; 2022 Jul; 40(11):5138-5146. PubMed ID: 33397223 [TBL] [Abstract][Full Text] [Related]
11. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. Dehury B; Raina V; Misra N; Suar M J Biomol Struct Dyn; 2021 Nov; 39(18):7231-7245. PubMed ID: 32762417 [TBL] [Abstract][Full Text] [Related]
12. Receptor binding domain of SARS-CoV-2 from Wuhan strain to Omicron B.1.1.529 attributes increased affinity to variable structures of human ACE2. Patil S; Alzahrani KJ; Banjer HJ; Halawani IF; Alzahrani H; Altayar MA; Albogami S; Angeles RF; Hassan AAA; Bhandi S; Raj AT J Infect Public Health; 2022 Jul; 15(7):781-787. PubMed ID: 35738053 [TBL] [Abstract][Full Text] [Related]
14. Urtica dioica Agglutinin: A plant protein candidate for inhibition of SARS-COV-2 receptor-binding domain for control of Covid19 Infection. Sabzian-Molaei F; Nasiri Khalili MA; Sabzian-Molaei M; Shahsavarani H; Fattah Pour A; Molaei Rad A; Hadi A PLoS One; 2022; 17(7):e0268156. PubMed ID: 35901082 [TBL] [Abstract][Full Text] [Related]
15. In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2. Erol I; Kotil SE; Fidan O; Yetiman AE; Durdagi S; Ortakci F Probiotics Antimicrob Proteins; 2023 Feb; 15(1):17-29. PubMed ID: 34837166 [TBL] [Abstract][Full Text] [Related]
16. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Fantini J; Chahinian H; Yahi N Int J Antimicrob Agents; 2020 Aug; 56(2):106020. PubMed ID: 32405156 [TBL] [Abstract][Full Text] [Related]
17. Tetracycline as an inhibitor to the SARS-CoV-2. Zhao TY; Patankar NA J Cell Biochem; 2021 Jul; 122(7):752-759. PubMed ID: 33619758 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the mechanism of interaction of SARS-CoV-2 B.1.640.2 variant RBD with the host receptors hACE2 and GRP78. Shafiq A; Khalid U; Abdur Rehman U; Abdullah Almuqri E; Muddassir M; Ahmad S; Khan MI; Khan A; Wei DQ J Biomol Struct Dyn; 2024; 42(4):2034-2042. PubMed ID: 37286365 [TBL] [Abstract][Full Text] [Related]
19. Emetine, a potent alkaloid for the treatment of SARS-CoV-2 targeting papain-like protease and non-structural proteins: pharmacokinetics, molecular docking and dynamic studies. Snoussi M; Redissi A; Mosbah A; De Feo V; Adnan M; Aouadi K; Alreshidi M; Patel M; Kadri A; Noumi E J Biomol Struct Dyn; 2022; 40(20):10122-10135. PubMed ID: 34254564 [TBL] [Abstract][Full Text] [Related]